📄 lvq1.m
字号:
function codebook=lvq1(codebook, data, rlen, alpha);%LVQ1 Trains a codebook with the LVQ1 -algorithm.%% sM = lvq1(sM, D, rlen, alpha)%% sM = lvq1(sM,sD,30*length(sM.codebook),0.08);%% Input and output arguments: % sM (struct) map struct, the class information must be % present on the first column of .labels field% D (struct) data struct, the class information must% be present on the first column of .labels field% rlen (scalar) running length% alpha (scalar) learning parameter%% sM (struct) map struct, the trained codebook%% NOTE: does not take mask into account.% % For more help, try 'type lvq1', or check out online documentation. % See also LVQ3, SOM_SUPERVISED, SOM_SEQTRAIN.%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lvq1%% PURPOSE%% Trains codebook with the LVQ1 -algorithm (described below).%% SYNTAX%% sM = lvq1(sM, D, rlen, alpha)%% DESCRIPTION%% Trains codebook with the LVQ1 -algorithm. Codebook contains a number% of vectors (mi, i=1,2,...,n) and so does data (vectors xj,% j=1,2,...,k). Both vector sets are classified: vectors may have a% class (classes are set to the first column of data or map -structs'% .labels -field). For each xj there is defined the nearest codebook% -vector index c by searching the minimum of the euclidean distances% between the current xj and codebook -vectors:%% c = min{ ||xj - mi|| }, i=[1,..,n], for fixed xj% i% If xj and mc belong to the same class, mc is updated as follows:% mc(t+1) = mc(t) + alpha * (xj(t) - mc(t))% If xj and mc belong to different classes, mc is updated as follows:% mc(t+1) = mc(t) - alpha * (xj(t) - mc(t))% Otherwise updating is not performed.% % Argument 'rlen' tells how many times training sequence is performed.% LVQ1 -algorithm may be stopped after a number of steps, that is% 30-50 times the number of codebook vectors.%% Argument 'alpha' is the learning rate, recommended to be smaller% than 0.1.%% NOTE: does not take mask into account.%% REFERENCES%% Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 176-179.%% See also LVQ_PAK from http://www.cis.hut.fi/research/som_lvq_pak.shtml% % REQUIRED INPUT ARGUMENTS%% sM The data to be trained.% (struct) A map struct.%% D The data to use in training.% (struct) A data struct.%% rlen (integer) Running length of LVQ1 -algorithm.% % alpha (float) Learning rate used in training.%% OUTPUT ARGUMENTS%% codebook Trained data.% (struct) A map struct.%% EXAMPLE%% lab = unique(sD.labels(:,1)); % different classes% mu = length(lab)*5; % 5 prototypes for each % sM = som_randinit(sD,'msize',[mu 1]); % initial prototypes% sM.labels = [lab;lab;lab;lab;lab]; % their classes% sM = lvq1(sM,sD,50*mu,0.05); % use LVQ1 to adjust% % the prototypes % sM = lvq3(sM,sD,50*mu,0.05,0.2,0.3); % then use LVQ3 %% SEE ALSO% % lvq3 Use LVQ3 algorithm for training.% som_supervised Train SOM using supervised training.% som_seqtrain Train SOM with sequential algorithm.% Contributed to SOM Toolbox vs2, February 2nd, 2000 by Juha Parhankangas% Copyright (c) Juha Parhankangas% http://www.cis.hut.fi/projects/somtoolbox/% Juha Parhankangas 310100 juuso 020200cod = codebook.codebook;c_class = class2num(codebook.labels(:,1));dat = data.data;d_class = class2num(data.labels(:,1));x=size(dat,1);y=size(cod,2);ONES=ones(size(cod,1),1);for t=1:rlen fprintf(1,'\rTraining round: %d',t); tmp=NaN*ones(x,y); for j=1:x no_NaN=find(~isnan(dat(j,:))); di = sqrt(sum([cod(:,no_NaN) - ONES*dat(j,no_NaN)].^2,2)); [foo,ind] = min(di); if d_class(j) & d_class(j) == c_class(ind) % 0 is for unclassified vectors tmp(ind,:) = cod(ind,:) + alpha * (dat(j,:) - cod(ind,:)); elseif d_class(j) tmp(ind,:) = cod(ind,:) - alpha*(dat(j,:) - cod(ind,:)); end end inds = find(~isnan(sum(tmp,2))); cod(inds,:) = tmp(inds,:);endcodebook.codebook = cod;sTrain = som_set('som_train','algorithm','lvq1',... 'data_name',data.name,... 'neigh','',... 'mask',ones(y,1),... 'radius_ini',NaN,... 'radius_fin',NaN,... 'alpha_ini',alpha,... 'alpha_type','constant',... 'trainlen',rlen,... 'time',datestr(now,0));codebook.trainhist(end+1) = sTrain;return;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function nos = class2num(class)names = {};nos = zeros(length(class),1);for i=1:length(class) if ~isempty(class{i}) & ~any(strcmp(class{i},names)) names=cat(1,names,class(i)); endendtmp_nos = (1:length(names))';for i=1:length(class) if ~isempty(class{i}) nos(i,1) = find(strcmp(class{i},names)); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -