📄 memory.h
字号:
/* memory.h - flat memory space interfaces *//* SimpleScalar(TM) Tool Suite * Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC. * All Rights Reserved. * * THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR, * YOU ARE AGREEING TO THESE TERMS AND CONDITIONS. * * No portion of this work may be used by any commercial entity, or for any * commercial purpose, without the prior, written permission of SimpleScalar, * LLC (info@simplescalar.com). Nonprofit and noncommercial use is permitted * as described below. * * 1. SimpleScalar is provided AS IS, with no warranty of any kind, express * or implied. The user of the program accepts full responsibility for the * application of the program and the use of any results. * * 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be * downloaded, compiled, executed, copied, and modified solely for nonprofit, * educational, noncommercial research, and noncommercial scholarship * purposes provided that this notice in its entirety accompanies all copies. * Copies of the modified software can be delivered to persons who use it * solely for nonprofit, educational, noncommercial research, and * noncommercial scholarship purposes provided that this notice in its * entirety accompanies all copies. * * 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY * PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC (info@simplescalar.com). * * 4. No nonprofit user may place any restrictions on the use of this software, * including as modified by the user, by any other authorized user. * * 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar * in compiled or executable form as set forth in Section 2, provided that * either: (A) it is accompanied by the corresponding machine-readable source * code, or (B) it is accompanied by a written offer, with no time limit, to * give anyone a machine-readable copy of the corresponding source code in * return for reimbursement of the cost of distribution. This written offer * must permit verbatim duplication by anyone, or (C) it is distributed by * someone who received only the executable form, and is accompanied by a * copy of the written offer of source code. * * 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is * currently maintained by SimpleScalar LLC (info@simplescalar.com). US Mail: * 2395 Timbercrest Court, Ann Arbor, MI 48105. * * Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC. */#ifndef MEMORY_H#define MEMORY_H#include <stdio.h>#include "host.h"#include "misc.h"#include "machine.h"#include "options.h"#include "stats.h"/* number of entries in page translation hash table (must be power-of-two) */#define MEM_PTAB_SIZE (32*1024)#define MEM_LOG_PTAB_SIZE 15/* page table entry */struct mem_pte_t { struct mem_pte_t *next; /* next translation in this bucket */ md_addr_t tag; /* virtual page number tag */ byte_t *page; /* page pointer */};/* memory object */struct mem_t { /* memory object state */ char *name; /* name of this memory space */ struct mem_pte_t *ptab[MEM_PTAB_SIZE];/* inverted page table */ /* memory object stats */ counter_t page_count; /* total number of pages allocated */ counter_t ptab_misses; /* total first level page tbl misses */ counter_t ptab_accesses; /* total page table accesses */};/* memory access command */enum mem_cmd { Read, /* read memory from target (simulated prog) to host */ Write /* write memory from host (simulator) to target */};/* memory access function type, this is a generic function exported for the purpose of access the simulated vitual memory space */typedef enum md_fault_type(*mem_access_fn)(struct mem_t *mem, /* memory space to access */ enum mem_cmd cmd, /* Read or Write */ md_addr_t addr, /* target memory address to access */ void *p, /* where to copy to/from */ int nbytes); /* transfer length in bytes *//* * virtual to host page translation macros *//* compute page table set */#define MEM_PTAB_SET(ADDR) \ (((ADDR) >> MD_LOG_PAGE_SIZE) & (MEM_PTAB_SIZE - 1))/* compute page table tag */#define MEM_PTAB_TAG(ADDR) \ ((ADDR) >> (MD_LOG_PAGE_SIZE + MEM_LOG_PTAB_SIZE))/* convert a pte entry at idx to a block address */#define MEM_PTE_ADDR(PTE, IDX) \ (((PTE)->tag << (MD_LOG_PAGE_SIZE + MEM_LOG_PTAB_SIZE)) \ | ((IDX) << MD_LOG_PAGE_SIZE))/* locate host page for virtual address ADDR, returns NULL if unallocated */#define MEM_PAGE(MEM, ADDR) \ (/* first attempt to hit in first entry, otherwise call xlation fn */ \ ((MEM)->ptab[MEM_PTAB_SET(ADDR)] \ && (MEM)->ptab[MEM_PTAB_SET(ADDR)]->tag == MEM_PTAB_TAG(ADDR)) \ ? (/* hit - return the page address on host */ \ (MEM)->ptab_accesses++, \ (MEM)->ptab[MEM_PTAB_SET(ADDR)]->page) \ : (/* first level miss - call the translation helper function */ \ mem_translate((MEM), (ADDR))))/* compute address of access within a host page */#define MEM_OFFSET(ADDR) ((ADDR) & (MD_PAGE_SIZE - 1))/* memory tickle function, allocates pages when they are first written */#define MEM_TICKLE(MEM, ADDR) \ (!MEM_PAGE(MEM, ADDR) \ ? (/* allocate page at address ADDR */ \ mem_newpage(MEM, ADDR)) \ : (/* nada... */ (void)0))/* memory page iterator */#define MEM_FORALL(MEM, ITER, PTE) \ for ((ITER)=0; (ITER) < MEM_PTAB_SIZE; (ITER)++) \ for ((PTE)=(MEM)->ptab[i]; (PTE) != NULL; (PTE)=(PTE)->next)/* * memory accessors macros, fast but difficult to debug... *//* safe version, works only with scalar types *//* FIXME: write a more efficient GNU C expression for this... */#define MEM_READ(MEM, ADDR, TYPE) \ (MEM_PAGE(MEM, (md_addr_t)(ADDR)) \ ? *((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))) \ : /* page not yet allocated, return zero value */ 0)/* unsafe version, works with any type */#define __UNCHK_MEM_READ(MEM, ADDR, TYPE) \ (*((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))))/* safe version, works only with scalar types *//* FIXME: write a more efficient GNU C expression for this... */#define MEM_WRITE(MEM, ADDR, TYPE, VAL) \ (MEM_TICKLE(MEM, (md_addr_t)(ADDR)), \ *((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))) = (VAL)) /* unsafe version, works with any type */#define __UNCHK_MEM_WRITE(MEM, ADDR, TYPE, VAL) \ (*((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))) = (VAL))/* fast memory accessor macros, typed versions */#define MEM_READ_BYTE(MEM, ADDR) MEM_READ(MEM, ADDR, byte_t)#define MEM_READ_SBYTE(MEM, ADDR) MEM_READ(MEM, ADDR, sbyte_t)#define MEM_READ_HALF(MEM, ADDR) MD_SWAPH(MEM_READ(MEM, ADDR, half_t))#define MEM_READ_SHALF(MEM, ADDR) MD_SWAPH(MEM_READ(MEM, ADDR, shalf_t))#define MEM_READ_WORD(MEM, ADDR) MD_SWAPW(MEM_READ(MEM, ADDR, word_t))#define MEM_READ_SWORD(MEM, ADDR) MD_SWAPW(MEM_READ(MEM, ADDR, sword_t))#ifdef HOST_HAS_QWORD#define MEM_READ_QWORD(MEM, ADDR) MD_SWAPQ(MEM_READ(MEM, ADDR, qword_t))#define MEM_READ_SQWORD(MEM, ADDR) MD_SWAPQ(MEM_READ(MEM, ADDR, sqword_t))#endif /* HOST_HAS_QWORD */#define MEM_WRITE_BYTE(MEM, ADDR, VAL) MEM_WRITE(MEM, ADDR, byte_t, VAL)#define MEM_WRITE_SBYTE(MEM, ADDR, VAL) MEM_WRITE(MEM, ADDR, sbyte_t, VAL)#define MEM_WRITE_HALF(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, half_t, MD_SWAPH(VAL))#define MEM_WRITE_SHALF(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, shalf_t, MD_SWAPH(VAL))#define MEM_WRITE_WORD(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, word_t, MD_SWAPW(VAL))#define MEM_WRITE_SWORD(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, sword_t, MD_SWAPW(VAL))#define MEM_WRITE_SFLOAT(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, sfloat_t, MD_SWAPW(VAL))#define MEM_WRITE_DFLOAT(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, dfloat_t, MD_SWAPQ(VAL))#ifdef HOST_HAS_QWORD#define MEM_WRITE_QWORD(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, qword_t, MD_SWAPQ(VAL))#define MEM_WRITE_SQWORD(MEM, ADDR, VAL) \ MEM_WRITE(MEM, ADDR, sqword_t, MD_SWAPQ(VAL))#endif /* HOST_HAS_QWORD *//* create a flat memory space */struct mem_t *mem_create(char *name); /* name of the memory space */ /* translate address ADDR in memory space MEM, returns pointer to host page */byte_t *mem_translate(struct mem_t *mem, /* memory space to access */ md_addr_t addr); /* virtual address to translate *//* allocate a memory page */voidmem_newpage(struct mem_t *mem, /* memory space to allocate in */ md_addr_t addr); /* virtual address to allocate *//* generic memory access function, it's safe because alignments and permissions are checked, handles any natural transfer sizes; note, faults out if nbytes is not a power-of-two or larger then MD_PAGE_SIZE */enum md_fault_typemem_access(struct mem_t *mem, /* memory space to access */ enum mem_cmd cmd, /* Read (from sim mem) or Write */ md_addr_t addr, /* target address to access */ void *vp, /* host memory address to access */ int nbytes); /* number of bytes to access *//* register memory system-specific statistics */voidmem_reg_stats(struct mem_t *mem, /* memory space to declare */ struct stat_sdb_t *sdb); /* stats data base *//* initialize memory system, call before loader.c */voidmem_init(struct mem_t *mem); /* memory space to initialize *//* dump a block of memory, returns any faults encountered */enum md_fault_typemem_dump(struct mem_t *mem, /* memory space to display */ md_addr_t addr, /* target address to dump */ int len, /* number bytes to dump */ FILE *stream); /* output stream *//* * memory accessor routines, these routines require a memory access function * definition to access memory, the memory access function provides a "hook" * for programs to instrument memory accesses, this is used by various * simulators for various reasons; for the default operation - direct access * to the memory system, pass mem_access() as the memory access function *//* copy a '\0' terminated string to/from simulated memory space, returns the number of bytes copied, returns any fault encountered */enum md_fault_typemem_strcpy(mem_access_fn mem_fn, /* user-specified memory accessor */ struct mem_t *mem, /* memory space to access */ enum mem_cmd cmd, /* Read (from sim mem) or Write */ md_addr_t addr, /* target address to access */ char *s); /* host memory string buffer *//* copy NBYTES to/from simulated memory space, returns any faults */enum md_fault_typemem_bcopy(mem_access_fn mem_fn, /* user-specified memory accessor */ struct mem_t *mem, /* memory space to access */ enum mem_cmd cmd, /* Read (from sim mem) or Write */ md_addr_t addr, /* target address to access */ void *vp, /* host memory address to access */ int nbytes); /* number of bytes to access *//* copy NBYTES to/from simulated memory space, NBYTES must be a multiple of 4 bytes, this function is faster than mem_bcopy(), returns any faults encountered */enum md_fault_typemem_bcopy4(mem_access_fn mem_fn, /* user-specified memory accessor */ struct mem_t *mem, /* memory space to access */ enum mem_cmd cmd, /* Read (from sim mem) or Write */ md_addr_t addr, /* target address to access */ void *vp, /* host memory address to access */ int nbytes); /* number of bytes to access *//* zero out NBYTES of simulated memory, returns any faults encountered */enum md_fault_typemem_bzero(mem_access_fn mem_fn, /* user-specified memory accessor */ struct mem_t *mem, /* memory space to access */ md_addr_t addr, /* target address to access */ int nbytes); /* number of bytes to clear */#endif /* MEMORY_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -