⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 example_280xadcsoc.c

📁 基于TMS320F2812的数字电源的c源程序3
💻 C
📖 第 1 页 / 共 3 页
字号:
   MAX_PWM=(Uint32)710000/U_SUM_PJ;
   if(MAX_PWM>2495)
   MAX_PWM=2495;
   MAX_PWM_adj=(((Uint32)MAX_PWM*MOTOR_ADJ)/9000)+100; 
   if(MAX_PWM_adj>2495)
   MAX_PWM_adj=2495;
   //--------------------------------------------
   TEMP_PWM=(MOTOR_ADJ>>7)+((MOTOR_ADJ>>8)*(MOTOR_ADJ>>8))+((MOTOR_ADJ>>9)*(MOTOR_ADJ>>9));

   if(TEMP_PWM>600)
   pwm_temp=600;
   else
   pwm_temp=TEMP_PWM;
   //-------
    //protect();
    run_start();
   //--计算输入直流电压--
   cal_dc_in_vol();
   //--过欠压保护--
   if(PROTECT_FLAG_reg.bit.FAULT_flag==0)
   {
    if((U_SUM>430)||(U_SUM<200))
    {
    PROTECT_FLAG_reg.bit.FAULT_flag=1;
    GpioDataRegs.GPACLEAR.bit.GPIO25=1;
    }
    }
   else
   {
    if((U_SUM<430)&&(U_SUM>200))
    {
    PROTECT_FLAG_reg.bit.FAULT_flag=0;
    GpioDataRegs.GPASET.bit.GPIO25=1;  
    }  
    }
   //-----------------------------------------
   	if(MOTOR_ADJ<12)
   	{
    PROTECT_FLAG_reg.bit.stop_run_flag=1;
    PROTECT_FLAG_reg.bit.soft_run_flag=0;
    Soft_vol=50;    
    }
    else
    {
     if(PROTECT_FLAG_reg.bit.stop_run_flag==1)
     {
      PROTECT_FLAG_reg.bit.stop_run_flag=0;
      PROTECT_FLAG_reg.bit.soft_run_flag=1;
      Soft_vol=50;
      }
    }
    if(MOTOR_ADJ<35)
    MT_325=75;
    else
    MT_325=89;
   ///////////////////////////////////////////
    }
}


interrupt void  adc_isr(void)
{
Uint16 i,temp,temp_i,TEMP2;
if(ConversionCount==3)
  Voltage1[ConversionCount] = AdcRegs.ADCRESULT0 >>5;
else
  Voltage1[ConversionCount] = AdcRegs.ADCRESULT0 >>4;
  //Voltage2[ConversionCount] = AdcRegs.ADCRESULT1 >>4;
  //Voltage3[ConversionCount] = AdcRegs.ADCRESULT2 >>6;
  //Voltage4[ConversionCount] = AdcRegs.ADCRESULT3 >>4;
  
  I_SUM128+=AdcRegs.ADCRESULT1 >>4;  
  U_SUM128+=AdcRegs.ADCRESULT2 >>4;
  MOTOR_SUM128+=AdcRegs.ADCRESULT3 >>4;
  //Voltage5[ConversionCount]=AdcRegs.ADCRESULT3 >>4;
  //----------------------------------------------------------
     if(PROTECT_FLAG_reg.bit.run_start_flag==1)
     {
      EPwm1Regs.AQCSFRC.bit.CSFA =0x01;
     }
     else
     {
  if(ConversionCount==MT_325) 
  {
   if(MOTOR_ADJ<250)
   EPwm1Regs.AQCSFRC.bit.CSFA =0x01;
   }
   if(ConversionCount==0) 
   {
   if(MOTOR_ADJ<12)
    EPwm1Regs.AQCSFRC.bit.CSFA =0x01;
   else
    EPwm1Regs.AQCSFRC.bit.CSFA =0x00;
   }
   }
  //----------------------------------------------------------
   //if(ConversionCount ==127) 
  // If 40 conversions have been logged, start over
  if(ConversionCount == 127) 
  {
   S60_S90_QF();
     ConversionCount = 0;
    // EPwm1Regs.AQCSFRC.bit.CSFA =0x01;
    PROTECT_FLAG_reg.bit.SAMP_flag=1;
    MOTOR_SUM+=MOTOR_SUM128>>8;//
    MOTOR_SUM128=0;
    MOTOR_COUNT++;
    //--
    if(MOTOR_COUNT==15)
    {
    MOTOR_COUNT=0;
    if(MOTOR_SUM<8000)
    MOTOR_ADJ_s60s90=MOTOR_SUM>>4;
    else
    MOTOR_ADJ_s60s90=MOTOR_SUM/5;
	//---
	ADJ_count++;
	if(ADJ_count>127)
	ADJ_count=0;
	Voltage5[ADJ_count]=MOTOR_ADJ_s60s90;
    //--
    MOTOR_SUM=0;
    }
    //--
    U_SUM=U_SUM128/819;
    U_SUM128=0; 
    MAX_COUNT++;
    U_SUM_SUM+=U_SUM;
    if(MAX_COUNT>15)
    {
    U_SUM_PJ=U_SUM_SUM>>4;
    MAX_COUNT=0;
    U_SUM_SUM=0;
    }
    NOLOAD_CURRENT=(((Uint32)17*(Uint32)M_U)/5830)+5;//27*5830=157410
    if(NOLOAD_CURRENT>17)
    NOLOAD_CURRENT=17;
    temp_i=(I_SUM128/699);//I_SUM
    if(temp_i<NOLOAD_CURRENT)
    I_SUM=0;
    else
    I_SUM=temp_i-NOLOAD_CURRENT;
    I_SUM128=0;    
  }

  else
      ConversionCount++;
   if(ConversionCount==1)
   {
    temp=0;
       for(i=0;i<4;i++)
         {
          temp+=Voltage1[124+i];
           } 
       if(PROTECT_FLAG_reg.bit.A1_flag==1)//MC2
       {          
       TEMP2=temp>>2;
       if(TEMP2>11)
       Uint16Emf1=TEMP2-8;
       else
       Uint16Emf1=TEMP2; 
       }
       else//mc3
       {
       TEMP2=temp>>2;
       if(TEMP2>11)
       Uint16Emf1=TEMP2-10;
       else
       Uint16Emf1=TEMP2;
       } 
         //------------------------------
       if(MOTOR_ADJ<30)
       motor_ctrl_1();
       else if(MOTOR_ADJ<226)
       motor_ctrl_2();
      // else if(MOTOR_ADJ<700)
      // motor_ctrl_3(); 
      // else if(MOTOR_ADJ<1300)
      // motor_ctrl_4();             
       else
       motor_ctrl_9();
       
         //------------------------------
   }

   //----------------------------------------------------
   
   //----------------------------------------------------
  // if(ConversionCount == 40) 
  //      EPwm1Regs.AQCSFRC.bit.CSFA =0x00;
  // Reinitialize for next ADC sequence
  AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;         // Reset SEQ1
  AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;       // Clear INT SEQ1 bit
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;   // Acknowledge interrupt to PIE
  
  return;
}
//---------------------------------------------------------------------------------

interrupt void epwm1_isr(void)
{
   // Update the CMPA and CMPB values
   //update_compare(&epwm1_info);
  // EPwm1Regs.CMPA.half.CMPA++;
  // EPwm1Regs.CMPB++;
   // Clear INT flag for this timer
  /*if(PwmCount<38) 
  {
   EPwm1Regs.AQCSFRC.bit.CSFA =0x01;
   }
   else
   EPwm1Regs.AQCSFRC.bit.CSFA =0x00; */
   if(PROTECT_FLAG_reg.bit.soft_run_flag==1)
   {
    if(Soft_vol<50)
    {
    Soft_vol++;
    EPwm1Regs.CMPA.half.CMPA=60+Soft_vol;
    }
    else
    {
    PROTECT_FLAG_reg.bit.soft_run_flag=0;
    Soft_vol=0;
    }
   }
   else
   {
   EPwm1Regs.CMPA.half.CMPA = EPWM1_CMPA;    // Set compare A value EPWM1_CMPA123,//
   }
   EPwm1Regs.CMPA.half.CMPAHR = (DutyFine << 8)+0x180;     // Left shift by 8 to write into MSB bits
   EPwm1Regs.ETCLR.bit.INT = 1;
   
   // Acknowledge this interrupt to receive more interrupts from group 3
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}


interrupt void epwm2_isr(void)
{

   // Update the CMPA and CMPB values
   //update_compare(&epwm2_info);
  // EPwm2Regs.CMPA.half.CMPA++;
  // EPwm2Regs.CMPB++;
   // Clear INT flag for this timer
   EPwm2Regs.ETCLR.bit.INT = 1;
     //  ConversionCount = 0; 

     //       LoopCount++;
     //if(LoopCount>15)
     //       LoopCount=0;
            
   // Acknowledge this interrupt to receive more interrupts from group 3
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}

/*interrupt void epwm3_isr(void)
{

   // Update the CMPA and CMPB values
   update_compare(&epwm3_info);
   // Clear INT flag for this timer
   EPwm3Regs.ETCLR.bit.INT = 1;
   // Acknowledge this interrupt to receive more interrupts from group 3
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}*/

void InitEPwm1Example()
{

   // Setup TBCLK
   //EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
   EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD; //2000      // Set timer period
   EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;    // Disable phase loading
   EPwm1Regs.TBPHS.half.TBPHS = 0x0000;       // Phase is 0
   EPwm1Regs.TBCTR = 0x0000;                  // Clear counter
   //XZLEPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2;   // Clock ratio to SYSCLKOUT
   //XZLEPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV2;
   EPwm1Regs.TBCTL.bit.HSPCLKDIV = 0;   // Clock ratio to SYSCLKOUT
   EPwm1Regs.TBCTL.bit.CLKDIV = 0;

   // Setup shadow register load on ZERO
   EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
   EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
   EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
   EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;   
   
   // Set Compare values
   EPwm1Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA;    // Set compare A value EPWM1_CMPA
   EPwm1Regs.CMPB = EPWM1_MIN_CMPB;              // Set Compare B value

   // Set actions
   EPwm1Regs.AQCTLA.bit.ZRO =AQ_SET;           // Set PWM1A on Zero
   EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;             // Clear PWM1A on event A, up count

   EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR;            // Set PWM1B on Zero
   EPwm1Regs.AQCTLB.bit.CBU = AQ_SET;          // Clear PWM1B on event B, up count
   
   // Interrupt where we will change the Compare Values
   EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;     // Select INT on Zero event
   EPwm1Regs.ETSEL.bit.INTEN = 1;                // Enable INT
   EPwm1Regs.ETPS.bit.INTPRD = ET_3RD;           // Generate INT on 3rd event   

   // Information this example uses to keep track
   // of the direction the CMPA/CMPB values are 
   // moving, the min and max allowed values and
   // a pointer to the correct ePWM registers
   epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA & CMPB 
   epwm1_info.EPwm_CMPB_Direction = EPWM_CMP_UP;
   epwm1_info.EPwmTimerIntCount = 0;             // Zero the interrupt counter
   epwm1_info.EPwmRegHandle = &EPwm1Regs;        // Set the pointer to the ePWM module
   epwm1_info.EPwmMaxCMPA = EPWM1_MAX_CMPA;      // Setup min/max CMPA/CMPB values
   epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA;       
   epwm1_info.EPwmMaxCMPB = EPWM1_MAX_CMPB;    
   epwm1_info.EPwmMinCMPB = EPWM1_MIN_CMPB;     
   	EALLOW;		
	EPwm2Regs.HRCNFG.all = 0x0;	
	EPwm2Regs.HRCNFG.bit.EDGMODE = HR_FEP;                //MEP control on Rising edge
	EPwm2Regs.HRCNFG.bit.CTLMODE = HR_CMP;
	EPwm2Regs.HRCNFG.bit.HRLOAD  = HR_CTR_ZERO;
	
	EDIS;  

}
/*
*/
void InitEPwm2Example()
{

   // Setup TBCLK
  // EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
   EPwm2Regs.TBPRD = EPWM2_TIMER_TBPRD; //2000      // Set timer period
   EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE;    // Disable phase loading
   EPwm2Regs.TBPHS.half.TBPHS = 0x0000;       // Phase is 0
   EPwm2Regs.TBCTR = 0x0000;                  // Clear counter
   //XZLEPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2;   // Clock ratio to SYSCLKOUT
   //XZLEPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV2;
   EPwm2Regs.TBCTL.bit.HSPCLKDIV = 4;   // Clock ratio to SYSCLKOUT
   EPwm2Regs.TBCTL.bit.CLKDIV = 4;

   // Setup shadow register load on ZERO
   EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
   EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
   EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
   EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;   

   // Set Compare values
   EPwm2Regs.CMPA.half.CMPA = EPWM2_MIN_CMPA;    // Set compare A value
   EPwm2Regs.CMPB = EPWM2_MIN_CMPB;              // Set Compare B value

   // Set actions
   EPwm2Regs.AQCTLA.bit.ZRO = AQ_CLEAR;            // Set PWM1A on Zero
   EPwm2Regs.AQCTLA.bit.CAU = AQ_SET;          // Clear PWM1A on event A, up count

   EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR;            // Set PWM1B on Zero
   EPwm2Regs.AQCTLB.bit.CBU = AQ_SET;          // Clear PWM1B on event B, up count
   
   // Interrupt where we will change the Compare Values
   EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;     // Select INT on Zero event
   EPwm2Regs.ETSEL.bit.INTEN = 1;                // Enable INT
   EPwm2Regs.ETPS.bit.INTPRD = ET_3RD;           // Generate INT on 3rd event   

   // Information this example uses to keep track
   // of the direction the CMPA/CMPB values are 
   // moving, the min and max allowed values and
   // a pointer to the correct ePWM registers
   epwm2_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA & CMPB 
   epwm2_info.EPwm_CMPB_Direction = EPWM_CMP_UP;
   epwm2_info.EPwmTimerIntCount = 0;             // Zero the interrupt counter
   epwm2_info.EPwmRegHandle = &EPwm2Regs;        // Set the pointer to the ePWM module

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -