📄 psn_1d.c
字号:
/*psn_lib/psn_1d.c*/
/***********************************************************************
Finite Volume Poisson PDE Solver: C-Library & Matlab Toolbox
Implements numerical solution of Poisson PDE
in 2D Cartesian and Cylindrical coordinates
Copyright (C) 2004 Igor Kaufman
Copyright (C) 2004 Lancaster University, UK
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Author's email: i.kaufman@lancaster.ac.uk
APPLICATION : 1D POISSON SOLVER
VERSION : 1.0
************************************************************************/
/*17.01.04*/
#include "psn.h"
int psn_1d_eps_solve_low(
const int N,
const int grid,
const double x0,
const double x1,
const double alpha0,
const double alpha1,
const double beta0,
const double beta1,
const double gamma0,
const double gamma1,
const PSN_VECTOR v,
const PSN_VECTOR e,
PSN_VECTOR u,
PSN_VECTOR a,
PSN_VECTOR b,
PSN_VECTOR c
)
{
int errcode;
double hx, hx2, tm;
int i;
if (grid>0)
hx=(x1-x0)/N;
else
hx=(x1-x0)/(N+1);
hx2=hx*hx;
// Initialize tridiagonal matrix
if (e)
for (i = 1; i <= N; i++) {
a[i] = (i>1)? 2*e[i-1]/(e[i-1]+e[i]):0;
c[i] = (i<N)?2*e[i+1]/(e[i]+e[i+1]):0;
b[i] = -a[i]-c[i];
u[i]=v[i]*hx2/e[i];
}
else
for (i = 1; i <= N; i++) {
a[i] = (i>1)? 1:0;
c[i] = (i<N)?1:0;
b[i] = -a[i]-c[i];
u[i]=v[i]*hx2;
}
//Boundary conditions
if (grid>0) { //staggered grid
b[1]-=(2.0+4.*beta0 / (alpha0 * hx - 2*beta0));
b[N]-=(2.0-4.*beta1 / (alpha1 * hx + 2*beta1));
u[1] -= 2.0*gamma0 * hx / (alpha0 * hx - 2*beta0);
u[N] -= 2.0*gamma1 * hx / (alpha1 * hx + 2*beta1);
} else { //standard grid
b[1] -=(1+ beta0 / (alpha0 * hx - beta0));
b[N] -=(1- beta1 / (alpha1 * hx + beta1));
u[1] -= gamma0 * hx / (alpha0 * hx - beta0);
u[N] -= gamma1 * hx / (alpha1 * hx + beta1);
}
// Invert tridiagonal matrix equation
errcode=psn_tridiag_solve_low(N,a,b,c,u);
// Calculate i=0 and i=N+1 values
tm= (grid>0) ? 2.:1.;
u[0] = (gamma0 * hx - tm*beta0 * u[1]) /(alpha0 * hx - tm*beta0);
u[N+1] = (gamma1 * hx + tm*beta1 * u[N]) /(alpha1 * hx + tm*beta1);
return errcode;
}
int psn_1d_struct_init(psn_1d_struct *pst, int N)
{
pst->N=N;
pst->v=psn_vector_create(N+2);
pst->e=psn_vector_create(N+2);
pst->u=psn_vector_create(N+2);
pst->a=psn_vector_create(N+2);
pst->b=psn_vector_create(N+2);
pst->c=psn_vector_create(N+2);
return 0;
}
int psn_1d_struct_free(psn_1d_struct *pst)
{
pst->N=0;
psn_vector_free(pst->v);
psn_vector_free(pst->e);
psn_vector_free(pst->u);
psn_vector_free(pst->a);
psn_vector_free(pst->b);
psn_vector_free(pst->c);
return 0;
}
int psn_1d_solver(psn_1d_struct *pst)
{
if (!pst->N) return 1;
return psn_1d_eps_solve_low(
pst->N,
pst->grid,
pst->x[0],
pst->x[1],
pst->alpha[0],
pst->alpha[1],
pst->beta[0],
pst->beta[1],
pst->gamma[0],
pst->gamma[1],
pst->v,
pst->e,
pst->u,
pst->a,
pst->b,
pst->c
);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -