📄 rls3.m
字号:
%RLS3 Problem 1.1.1.2.3
%
% 'ifile.mat' - input file containing:
% I - members of ensemble
% K - iterations
% a1 - coefficient of input AR process
% sigmax - standard deviation of input
% Wo - coefficient vector of plant
% sigman - standard deviation of measurement noise
% lambda - forgetting factor
%
% 'ofile.mat' - output file containing:
% ind - sample indexes
% M - misadjustment
clear all % clear memory
load ifile; % read input variables
sigmav=sigmax*sqrt(1-a1^2);
% standard deviation of input to AR process
L=length(Wo); % plant and filter length
N=L-1; % plant and filter order
delta=1/sigmax^2; % initialization factor for SD
ilambda=1/lambda; % auxiliary constant
MSE=zeros(K,1); % prepare to accumulate MSE*I
MSEmin=zeros(K,1); % prepare to accumulate MSEmin*I
for i=1:I, % ensemble
X=zeros(L,1); % initial memory
SD=delta*eye(L);
% initial inverse of deterministic correlation matrix
W=zeros(L,1); % initial coefficient vector
v=randn(K,1)*sigmav; % input to AR process
x=filter([1,0],[1,a1],v); % input
n=randn(K,1)*sigman; % measurement noise
for k=1:K, % iterations
X=[x(k)
X(1:N)]; % new input vector
d=Wo'*X; % desired signal sample
ep=d+n(k)-W'*X; % a priori error sample
psi=SD*X;
SD=ilambda*(SD-psi*psi'/(lambda+psi'*X));
% new inverse of deterministic correlation matrix
W=W+ep*SD*X; % new coefficient vector
MSE(k)=MSE(k)+ep^2; % accumulate MSE*I
MSEmin(k)=MSEmin(k)+(n(k))^2; % accumulate MSEmin*I
end
end
ind=0:(K-1); % sample indexes
M=MSE./MSEmin-1; % calculate misadjustment
save ofile ind M; % write output variables
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -