📄 fqrrls2.m
字号:
%FQRRLS2 Problem 1.1.1.2.9
%
% 'ifile.mat' - input file containing:
% I - members of ensemble
% K - iterations
% a1 - coefficient of input AR process
% sigmax - standard deviation of input
% Wo - coefficient vector of plant
% sigman - standard deviation of measurement noise
% lambda - forgetting factor
%
% 'ofile.mat' - output file containing:
% ind - sample indexes
% M - misadjustment
clear all % clear memory
load ifile; % read input variables
sigmav=sigmax*sqrt(1-a1^2);
% standard deviation of input to AR process
L=length(Wo); % plant and filter length
L1=L+1;
L2=L1+1; % auxiliary constants
N=L-1; % plant and filter order
MSE=zeros(K,1); % prepare to accumulate MSE*I
MSEmin=zeros(K,1); % prepare to accumulate MSEmin*I
for i=1:I, % ensemble
X=zeros(L,1); % initial memory
v=randn(K,1)*sigmav; % input to AR process
x=filter([1,0],[1,a1],v); % input
n=randn(K,1)*sigman; % measurement noise for i=1:I,
xq2=zeros(L,1);
dq2=zeros(L,1);
Qthetaf=sparse(eye(L2));
for l=1:L,
Qthetabp(:,((1:L1)+(l-1)*L1))=sparse(eye(L1));
Qtheta(:,((1:L1)+(l-1)*L1))=sparse(eye(L1));
end
normef=abs(x(1));
for k=1:(K-1), % iterations
AUX=[x(k+1)
lambda^(1/2)*xq2];
for l=1:L,
AUX=Qtheta(:,((1:L1)+(l-1)*L1))*AUX;
end
efq1=AUX(1);
xq2=AUX(2:L1);
aux=normef;
normef=sqrt(lambda*aux^2+efq1^2);
costhetaf=lambda^(1/2)*aux/normef;
sinthetaf=efq1/normef;
Qthetaf(1,1)=costhetaf;
Qthetaf(1,L2)=-sinthetaf;
Qthetaf(L2,1)=sinthetaf;
Qthetaf(L2,L2)=costhetaf;
c=[1
zeros(L,1)];
for l=L:-1:1,
c=Qthetabp(:,((1:L1)+(l-1)*L1))*c;
end
ce=[0
c];
for l=1:L,
ce(1:L1)=Qtheta(:,((1:L1)+(l-1)*L1))*ce(1:L1);
end
ce=Qthetaf*ce;
c=ce(2:L2);
alpha=c(1);
for l=1:L,
aux=alpha;
alpha=sqrt(aux^2+(c(l+1))^2);
costhetabp=aux/alpha;
sinthetabp=-c(l+1)/alpha;
Qthetabp(1,1+(l-1)*L1)=costhetabp;
Qthetabp(1,l+1+(l-1)*L1)=sinthetabp;
Qthetabp(l+1,1+(l-1)*L1)=-sinthetabp;
Qthetabp(l+1,l+1+(l-1)*L1)=costhetabp;
end
AUX=[1
zeros(L1,1)];
for l=1:L,
AUX(1:L1)=Qtheta(:,((1:L1)+(l-1)*L1))*AUX(1:L1);
end
AUX=Qthetaf*AUX;
re=AUX(2:L2);
for l=1:L,
re=(Qthetabp(:,((1:L1)+(l-1)*L1)))'*re;
end
r=re(2:L1);
gammap=1;
for l=1:L,
aux=gammap;
gammap=sqrt(aux^2-(r(l))^2);
costheta=gammap/aux;
sintheta=r(l)/aux;
Qtheta(1,1+(l-1)*L1)=costheta;
Qtheta(1,l+1+(l-1)*L1)=-sintheta;
Qtheta(l+1,1+(l-1)*L1)=sintheta;
Qtheta(l+1,l+1+(l-1)*L1)=costheta;
end
X=[x(k+1)
X(1:N)]; % new input vector
d=Wo'*X+n(k+1); % noisy desired signal sample
AUX=[d
lambda^(1/2)*dq2];
for l=1:L,
AUX=Qtheta(:,((1:L1)+(l-1)*L1))*AUX;
end
eq1=AUX(1);
dq2=AUX(2:L1);
ep=eq1/gammap; % a priori error sample
MSE(k+1)=MSE(k+1)+ep^2; % accumulate MSE*I
MSEmin(k+1)=MSEmin(k+1)+(n(k+1))^2; % accumulate MSEmin*I
end
end
ind=0:(K-1); % sample indexes
M=MSE./MSEmin-1; % calculate misadjustment
save ofile ind M; % write output variables
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -