📄 svm.cpp
字号:
if(m>0) {
sum=0; /* dual linear component for eq constraints */
for(j=0;j<n;j++) {
for(k=0;k<n;k++) {
sum+=(ce[k]*ig[k*n+j]*g0[j]);
}
}
d0[2*n]=ce0[0]+sum;
d0[2*n+1]=-ce0[0]-sum;
}
maxviol=999999;
iter=0;
retrain=1;
maxfaktor=1;
scalemaxiter=maxiter/5;
while((retrain) && (maxviol > 0) && (iter < (scalemaxiter*maxfaktor))) {
iter++;
while((maxviol > precision) && (iter < (scalemaxiter*maxfaktor))) {
iter++;
maxviol=0;
for(i=0;i<2*(n+m);i++) {
sum=d0[i];
for(j=0;j<2*(n+m);j++) {
sum+=d[i*2*(n+m)+j]*dual_old[j];
}
sum-=d[i*2*(n+m)+i]*dual_old[i];
dual[i]=-sum/d[i*2*(n+m)+i];
if(dual[i]<0) dual[i]=0;
viol=fabs(dual[i]-dual_old[i]);
if(viol>maxviol)
maxviol=viol;
dual_old[i]=dual[i];
}
/*
sprintf(temstr,"%d) maxviol=%20f precision=%f\n",iter,maxviol,precision);
*/
}
if(m>0) {
for(i=0;i<n;i++) {
temp[i]=dual[i]-dual[i+n]+ce[i]*(dual[n+n]-dual[n+n+1])+g0[i];
}
}
else {
for(i=0;i<n;i++) {
temp[i]=dual[i]-dual[i+n]+g0[i];
}
}
for(i=0;i<n;i++) {
primal[i]=0; /* calc value of primal variables */
for(j=0;j<n;j++) {
primal[i]+=ig[i*n+j]*temp[j];
}
primal[i]*=-1.0;
if(primal[i]<=(low[i])) { /* clip conservatively */
primal[i]=low[i];
}
else if(primal[i]>=(up[i])) {
primal[i]=up[i];
}
}
if(m>0)
model_b=dual[n+n+1]-dual[n+n];
else
model_b=0;
epsilon_hideo=EPSILON_HIDEO;
for(i=0;i<n;i++) { /* check precision of alphas */
isnantest+=primal[j];
dist=-model_b*ce[i];
dist+=(g0[i]+1.0);
for(j=0;j<i;j++) {
dist+=(primal[j]*g[j*n+i]);
}
for(j=i;j<n;j++) {
dist+=(primal[j]*g[i*n+j]);
}
if((primal[i]<(up[i]-epsilon_hideo)) && (dist < (1.0-epsilon_crit))) {
epsilon_hideo=(up[i]-primal[i])*2.0;
}
else if((primal[i]>(low[i]+epsilon_hideo)) &&(dist>(1.0+epsilon_crit))) {
epsilon_hideo=(primal[i]-low[i])*2.0;
}
}
/*sprintf(temstr,"\nEPSILON_HIDEO=%.30f\n",epsilon_hideo); */
for(i=0;i<n;i++) { /* clip alphas to bounds */
if(primal[i]<=(low[i]+epsilon_hideo)) {
primal[i]=low[i];
}
else if(primal[i]>=(up[i]-epsilon_hideo)) {
primal[i]=up[i];
}
}
retrain=0;
primal_optimal=1;
at_bound=0;
for(i=0;(i<n);i++) { /* check primal KT-Conditions */
dist=-model_b*ce[i];
dist+=(g0[i]+1.0);
for(j=0;j<i;j++) {
dist+=(primal[j]*g[j*n+i]);
}
for(j=i;j<n;j++) {
dist+=(primal[j]*g[i*n+j]);
}
if((primal[i]<(up[i]-epsilon_a)) && (dist < (1.0-epsilon_crit))) {
retrain=1;
primal_optimal=0;
}
else if((primal[i]>(low[i]+epsilon_a)) && (dist > (1.0+epsilon_crit))) {
retrain=1;
primal_optimal=0;
}
if((primal[i]<=(low[i]+epsilon_a)) || (primal[i]>=(up[i]-epsilon_a))) {
at_bound++;
}
/* sprintf(temstr,"HIDEOtemp: a[%ld]=%.30f, dist=%.6f, b=%f, at_bound=%ld\n",i,primal[i],dist,model_b,at_bound); */
}
if(m>0) {
eq=-ce0[0]; /* check precision of eq-constraint */
for(i=0;i<n;i++) {
eq+=(ce[i]*primal[i]);
}
if((EPSILON_EQ < fabs(eq))
/*
&& !((goal==PRIMAL_OPTIMAL)
&& (at_bound==n)) */
) {
retrain=1;
primal_optimal=0;
}
/* sprintf(temstr,"\n eq=%.30f ce0=%f at-bound=%ld\n",eq,ce0[0],at_bound); */
}
if(retrain) {
precision/=10;
if(((goal == PRIMAL_OPTIMAL) && (maxfaktor < 50000))
|| (maxfaktor < 5)) {
maxfaktor++;
}
}
}
if(!primal_optimal) {
for(i=0;i<n;i++) {
primal[i]=0; /* calc value of primal variables */
for(j=0;j<n;j++) {
primal[i]+=ig[i*n+j]*temp[j];
}
primal[i]*=-1.0;
if(primal[i]<=(low[i]+epsilon_a)) { /* clip conservatively */
primal[i]=low[i];
}
else if(primal[i]>=(up[i]-epsilon_a)) {
primal[i]=up[i];
}
}
}
isnantest=0;
for(i=0;i<n;i++) { /* check for isnan */
isnantest+=primal[i];
}
if(m>0) {
temp1=dual[n+n+1]; /* copy the dual variables for the eq */
temp2=dual[n+n]; /* constraints to a handier location */
for(i=n+n+1;i>=2;i--) {
dual[i]=dual[i-2];
}
dual[0]=temp2;
dual[1]=temp1;
isnantest+=temp1+temp2;
}
if(isnan(isnantest)) {
return((int)NAN_SOLUTION);
}
else if(primal_optimal) {
return((int)PRIMAL_OPTIMAL);
}
else if(maxviol == 0.0) {
return((int)DUAL_OPTIMAL);
}
else {
return((int)MAXITER_EXCEEDED);
}
}
void CSVM::linvert_matrix(
double *matrix,
long depth,
double *inverse,double lindep_sensitivity,
long *lin_dependent) /* indicates the active parts of matrix on
input and output*/
{
long i,j,k;
double factor;
for(i=0;i<depth;i++) {
/* lin_dependent[i]=0; */
for(j=0;j<depth;j++) {
inverse[i*depth+j]=0.0;
}
inverse[i*depth+i]=1.0;
}
for(i=0;i<depth;i++) {
if(lin_dependent[i] || (fabs(matrix[i*depth+i])<lindep_sensitivity)) {
lin_dependent[i]=1;
}
else {
for(j=i+1;j<depth;j++) {
factor=matrix[j*depth+i]/matrix[i*depth+i];
for(k=i;k<depth;k++) {
matrix[j*depth+k]-=(factor*matrix[i*depth+k]);
}
for(k=0;k<depth;k++) {
inverse[j*depth+k]-=(factor*inverse[i*depth+k]);
}
}
}
}
for(i=depth-1;i>=0;i--) {
if(!lin_dependent[i]) {
factor=1/matrix[i*depth+i];
for(k=0;k<depth;k++) {
inverse[i*depth+k]*=factor;
}
matrix[i*depth+i]=1;
for(j=i-1;j>=0;j--) {
factor=matrix[j*depth+i];
matrix[j*depth+i]=0;
for(k=0;k<depth;k++) {
inverse[j*depth+k]-=(factor*inverse[i*depth+k]);
}
}
}
}
}
void CSVM::ladd_matrix(
double *matrix,
long depth,
double scalar)
{
long i,j;
for(i=0;i<depth;i++) {
for(j=0;j<depth;j++) {
matrix[i*depth+j]+=scalar;
}
}
}
void CSVM::lcopy_matrix(
double *matrix,
long depth,
double *matrix2)
{
long i;
for(i=0;i<(depth)*(depth);i++) {
matrix2[i]=matrix[i];
}
}
void CSVM::lswitch_rows_matrix(
double *matrix,
long depth,long r1,long r2)
{
long i;
double temp;
for(i=0;i<depth;i++) {
temp=matrix[r1*depth+i];
matrix[r1*depth+i]=matrix[r2*depth+i];
matrix[r2*depth+i]=temp;
}
}
void CSVM::lswitchrk_matrix(
double *matrix,
long depth,long rk1,long rk2)
{
long i;
double temp;
for(i=0;i<depth;i++) {
temp=matrix[rk1*depth+i];
matrix[rk1*depth+i]=matrix[rk2*depth+i];
matrix[rk2*depth+i]=temp;
}
for(i=0;i<depth;i++) {
temp=matrix[i*depth+rk1];
matrix[i*depth+rk1]=matrix[i*depth+rk2];
matrix[i*depth+rk2]=temp;
}
}
double CSVM::calculate_qp_objective(
long opt_n,
double *opt_g,double *opt_g0,double *alpha)
{
double obj;
long i,j;
obj=0; /* calculate objective */
for(i=0;i<opt_n;i++) {
obj+=(opt_g0[i]*alpha[i]);
obj+=(0.5*alpha[i]*alpha[i]*opt_g[i*opt_n+i]);
for(j=0;j<i;j++) {
obj+=(alpha[j]*alpha[i]*opt_g[j*opt_n+i]);
}
}
return(obj);
}
/********************************svm_hideo****************************/
/********************************svm_learn****************************/
/* Learns an SVM model based on the training data in docs/label. The resulting
model is returned in the structure model. */
void CSVM::svm_learn(
DOC *docs,
long *label,
long totdoc,
long totwords,
LEARN_PARM *learn_parm,
KERNEL_PARM *kernel_parm,
KERNEL_CACHE *kernel_cache,
MODEL *model
)
{
long *inconsistent,i;
long inconsistentnum;
long misclassified,upsupvecnum;
double loss,model_length,example_length;
double maxdiff,*lin,*a;
long runtime_start,runtime_end;
long iterations;
long *unlabeled,transduction;
long heldout;
long loo_count=0,loo_count_pos=0,loo_count_neg=0,trainpos=0,trainneg=0;
long loocomputed=0,runtime_start_loo=0,runtime_start_xa=0;
double heldout_c=0,r_delta_sq=0,r_delta,r_delta_avg;
double *xi_fullset; /* buffer for storing xi on full sample in loo */
double *a_fullset; /* buffer for storing alpha on full sample in loo */
TIMING timing_profile;
SHRINK_STATE shrink_state;
runtime_start=get_runtime();
timing_profile.time_kernel=0;
timing_profile.time_opti=0;
timing_profile.time_shrink=0;
timing_profile.time_update=0;
timing_profile.time_model=0;
timing_profile.time_check=0;
timing_profile.time_select=0;
com_result.kernel_cache_statistic=0;
learn_parm->totwords=totwords;
/* make sure -n value is reasonable */
if((learn_parm->svm_newvarsinqp < 2) || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize))
{
learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
}
init_shrink_state(&shrink_state,totdoc,(long)10000);
inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
a = (double *)my_malloc(sizeof(double)*totdoc);
a_fullset = (double *)my_malloc(sizeof(double)*totdoc);
xi_fullset = (double *)my_malloc(sizeof(double)*totdoc);
lin = (double *)my_malloc(sizeof(double)*totdoc);
learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc);
model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));
model->at_upper_bound=0;
model->b=0;
model->supvec[0]=0; /* element 0 reserved and empty for now */
model->alpha[0]=0;
model->lin_weights=NULL;
model->totwords=totwords;
model->totdoc=totdoc;
model->kernel_parm=(*kernel_parm);
model->sv_num=1;
model->loo_error=-1;
model->loo_recall=-1;
model->loo_precision=-1;
model->xa_error=-1;
model->xa_recall=-1;
model->xa_precision=-1;
inconsistentnum=0;
transduction=0;
r_delta=estimate_r_delta(docs,totdoc,kernel_parm);
r_delta_sq=r_delta*r_delta;
r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm);
if(learn_parm->svm_c == 0.0)
{ /* default value for C */
learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg);
if (com_pro.show_compute_1)
{
sprintf(temstr,"Setting default regularization parameter C=%.4f\n",learn_parm->svm_c);
printm(temstr);
}
}
for(i=0;i<totdoc;i++)
{ /* various inits */
inconsistent[i]=0;
a[i]=0;
lin[i]=0;
unlabeled[i]=0;
if(label[i] == 0)
{
unlabeled[i]=1;
transduction=1;
}
if(label[i] > 0)
{
learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio*
fabs((double)label[i]);
label[i]=1;
trainpos++;
}
else if(label[i] < 0)
{
learn_parm->svm_cost[i]=learn_parm->svm_c*fabs((double)label[i]);
label[i]=-1;
trainneg++;
}
else
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -