📄 svm.cpp
字号:
// SVM.cpp: implementation of the CSVM class.
//
//////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "SVM.h"
#include "Message.h"
# include <stdio.h>
# include <ctype.h>
# include <math.h>
# include <string.h>
# include <stdlib.h>
# include <time.h>
# include <float.h>
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW
#endif
extern CCompute_Prompt com_pro;
extern CCompute_Param com_param;
extern CCompute_Result com_result;
# define VERSION "V3.50"
# define VERSION_DATE "01.11.00"
# define PRIMAL_OPTIMAL 1
# define DUAL_OPTIMAL 2
# define MAXITER_EXCEEDED 3
# define NAN_SOLUTION 4
# define ONLY_ONE_VARIABLE 5
# define LARGEROUND 0
# define SMALLROUND 1
# define DEF_PRECISION 1E-5
# define DEF_MAX_ITERATIONS 200
# define DEF_LINDEP_SENSITIVITY 1E-8
# define EPSILON_HIDEO 1E-20
# define EPSILON_EQ 1E-5
CSVM theSVM;
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CSVM::CSVM()
{
precision_violations=0;
opt_precision=DEF_PRECISION;
maxiter=DEF_MAX_ITERATIONS;
lindep_sensitivity=DEF_LINDEP_SENSITIVITY;
smallroundcount=0;
}
CSVM::~CSVM()
{
}
/***************************svm_learn_main****************************/
void CSVM::set_learn_parameters(LEARN_PARM* learn_parm,KERNEL_PARM* kernel_parm)
{
learn_parm->biased_hyperplane=com_param.biased_Hyperplane;
learn_parm->remove_inconsistent=com_param.remove_inconsitant;
learn_parm->skip_final_opt_check=com_param.final_test;
learn_parm->svm_maxqpsize=com_param.maximum_size;
learn_parm->svm_newvarsinqp=com_param.new_variable;
learn_parm->svm_iter_to_shrink=com_param.iteration_time;
learn_parm->svm_c=com_param.C;
learn_parm->transduction_posratio=com_param.fraction;
learn_parm->svm_costratio=com_param.cost_factor;
learn_parm->svm_costratio_unlab=1.0;
learn_parm->svm_unlabbound=1E-5;
learn_parm->epsilon_crit=0.001;
learn_parm->epsilon_a=1E-15;
learn_parm->compute_loo=com_param.loo;
learn_parm->rho=com_param.rho;
learn_parm->xa_depth=com_param.search_depth;
kernel_parm->kernel_type=com_param.kernel_type;
kernel_parm->poly_degree=com_param.poly_degree;
kernel_parm->rbf_gamma=com_param.rbf_gamma;
kernel_parm->coef_lin=com_param.poly_s;
kernel_parm->coef_const=com_param.poly_c;
//strcpy(kernel_parm->custom,com_param.);
}
int CSVM::svm_learn_main (int pos_label)
{
DOC *docs; /* training examples */
long *label,max_docs,max_words_doc;
long totwords,totdoc,ll,i;
KERNEL_CACHE kernel_cache;
LEARN_PARM learn_parm;
KERNEL_PARM kernel_parm;
MODEL model;
char docfile[200];
char modelfile[200];
if (com_pro.show_action)
printm("begin to compute");
if (com_pro.show_action)
printm("Scanning examples...");
set_learn_parameters(&learn_parm,&kernel_parm);
strcpy(docfile,com_param.trainfile);
strcpy(modelfile,com_param.modelfile);
// kernel_cache_size=com_param.cache_size;
nol_ll(docfile,&max_docs,&max_words_doc,&ll); /* scan size of input file */
max_words_doc+=2;
ll+=2;
max_docs+=2;
docs = (DOC *)my_malloc(sizeof(DOC)*max_docs);
label = (long *)my_malloc(sizeof(long)*max_docs);
read_documents(docfile,docs,label,max_words_doc,ll,&totwords,&totdoc,pos_label);
if(kernel_parm.kernel_type == LINEAR) /* don't need the cache */
{
svm_learn(docs,label,totdoc,totwords,&learn_parm,&kernel_parm,NULL,&model);
}
else
{
kernel_cache_init(&kernel_cache,totdoc,com_param.cache_size);
svm_learn(docs,label,totdoc,totwords,&learn_parm,&kernel_parm,&kernel_cache,&model);
kernel_cache_cleanup(&kernel_cache);
}
write_model(modelfile,&model);
free(model.supvec);
free(model.alpha);
free(model.index);
for(i=0;i<totdoc;i++)
free(docs[i].words);
free(docs);
free(label);
if (com_pro.show_action)
printm("Cease to compute");
return(0);
}
/********************************svm_learn_main****************************/
/********************************svm_classify****************************/
double CSVM::svm_classify(DOC &doc)
{
long llsv,max_sv,max_words_sv,pred_format,j;
double sim=0;
MODEL model;
char modelfile[MAX_PATH];
strcpy(modelfile,com_param.modelfile);
pred_format=0;
// scan size of model file
nol_ll(modelfile,&max_sv,&max_words_sv,&llsv);
max_words_sv+=2;
llsv+=2;
model.supvec = (DOC **)my_malloc(sizeof(DOC *)*max_sv);
model.alpha = (double *)my_malloc(sizeof(double)*max_sv);
read_model(modelfile,&model,max_words_sv,llsv);
doc.twonorm_sq=sprod_ss(doc.words,doc.words);
if(model.kernel_parm.kernel_type == 0)
{ // linear kernel, compute weight vector
add_weight_vector_to_linear_model(&model);
for(j=0;(doc.words[j]).wnum != 0;j++)
{
// Check if feature numbers are not larger than in
// model. Remove feature if necessary.
if((doc.words[j]).wnum>model.totwords)
(doc.words[j]).wnum=0;
}
sim=classify_example_linear(&model,&doc);
}
// non-linear kernel
else sim=classify_example(&model,&doc);
free(model.supvec);
free(model.alpha);
//linear kernel
if(model.kernel_parm.kernel_type == 0) free(model.lin_weights);
return sim;
}
int CSVM::svm_classify(int post_label, double* weight)
{
DOC doc; /* test example */
long max_docs,max_words_doc,lld,llsv;
long max_sv,max_words_sv,totdoc=0,doc_label;
long wnum,pred_format;
long j;
char *line;
FILE *docfl;
MODEL model;
char docfile[MAX_PATH];
char modelfile[MAX_PATH];
strcpy(docfile,com_param.classifyfile);
strcpy(modelfile,com_param.modelfile);
pred_format=0;
nol_ll(docfile,&max_docs,&max_words_doc,&lld); /* scan size of input file */
max_words_doc+=2;
lld+=2;
nol_ll(modelfile,&max_sv,&max_words_sv,&llsv); /* scan size of model file */
max_words_sv+=2;
llsv+=2;
model.supvec = (DOC **)my_malloc(sizeof(DOC *)*max_sv);
model.alpha = (double *)my_malloc(sizeof(double)*max_sv);
line = (char *)my_malloc(sizeof(char)*lld);
doc.words = (SVM_WORD *)my_malloc(sizeof(SVM_WORD)*(max_words_doc+10));
read_model(modelfile,&model,max_words_sv,llsv);
/* linear kernel */
/* compute weight vector */
if(model.kernel_parm.kernel_type == 0)
{
add_weight_vector_to_linear_model(&model);
}
if (com_pro.show_action)
printm("Classifying test examples..");
if ((docfl = fopen (docfile, "r")) == NULL)
{
printe(docfile);
return -1;
}
//chen 10.9.2001
while((!feof(docfl)) && fgets(line,(int)lld,docfl))
{
if(line[0] == '#') continue; /* line contains comments */
parse_document(line,&doc,&doc_label,&wnum,max_words_doc);
if(model.kernel_parm.kernel_type == 0)
{ /* linear kernel */
for(j=0;(doc.words[j]).wnum != 0;j++)
{ /* Check if feature numbers are not larger than in
model. Remove feature if necessary. */
if((doc.words[j]).wnum>model.totwords)
(doc.words[j]).wnum=0;
}
weight[totdoc]=classify_example_linear(&model,&doc);
}
else /* non-linear kernel */
weight[totdoc]=classify_example(&model,&doc);
totdoc++;
}
free(line);
free(doc.words);
free(model.supvec);
free(model.alpha);
if(model.kernel_parm.kernel_type == 0)
{ /* linear kernel */
free(model.lin_weights);
}
return(0);
}
/********************************svm_classify****************************/
/********************************svm_common****************************/
double CSVM::classify_example(MODEL *model,DOC *ex)
{
register long i;
register double dist;
dist=0;
for(i=1;i<model->sv_num;i++) {
dist+=kernel(&model->kernel_parm,model->supvec[i],ex)*model->alpha[i];
}
return(dist-model->b);
}
/* classifies example for linear kernel
important: the model must have the linear weight vector computed
important: the feature numbers in the example to classify must
not be larger than the weight vector! */
double CSVM::classify_example_linear(MODEL *model,DOC *ex)
{
return((double)(sprod_ns(model->lin_weights,ex->words)-model->b));
}
/* calculate the kernel function */
CFLOAT CSVM::kernel(KERNEL_PARM *kernel_parm,DOC *a,DOC*b)
{
com_result.kernel_cache_statistic++;
switch(kernel_parm->kernel_type)
{
case 0: /* linear */
return((CFLOAT)sprod_ss(a->words,b->words));
case 1: /* polynomial */
return((CFLOAT)pow(kernel_parm->coef_lin*sprod_ss(a->words,b->words)+kernel_parm->coef_const,(double)kernel_parm->poly_degree));
case 2: /* radial basis function */
return((CFLOAT)exp(-kernel_parm->rbf_gamma*(a->twonorm_sq-2*sprod_ss(a->words,b->words)+b->twonorm_sq)));
case 3: /* sigmoid neural net */
return((CFLOAT)tanh(kernel_parm->coef_lin*sprod_ss(a->words,b->words)+kernel_parm->coef_const));
case 4: /* custom-kernel supplied in file kernel.h*/
return((CFLOAT)custom_kernel(kernel_parm,a,b));
//chen .test sum of
//return((CFLOAT)pow(kernel_parm->coef_lin*sprod_ss(a->words,b->words)+kernel_parm->coef_const,(double)kernel_parm->poly_degree)+exp(-kernel_parm->rbf_gamma*(a->twonorm_sq-2*sprod_ss(a->words,b->words)+b->twonorm_sq)));
default: sprintf(temstr,"Error: Unknown kernel function");
printm(temstr);
return (-1);
}
}
/* compute the inner product of two sparse vectors */
double CSVM::sprod_ss(SVM_WORD *a,SVM_WORD*b)
{
register FVAL sum=0;
register SVM_WORD *ai,*bj;
ai=a;
bj=b;
while (ai->wnum && bj->wnum) {
if(ai->wnum > bj->wnum) {
bj++;
}
else if (ai->wnum < bj->wnum) {
ai++;
}
else {
sum+=ai->weight * bj->weight;
ai++;
bj++;
}
}
return((double)sum);
}
/* compute the inner product of two sparse vectors,b right shit 1 bit */
double CSVM::sprod_ss1(SVM_WORD *a,SVM_WORD*b,int offset)
{
register FVAL sum=0;
register SVM_WORD *ai,*bj;
ai=a;
bj=b;
while (ai->wnum && bj->wnum) {
if(ai->wnum > bj->wnum+offset) {
bj++;
}
else if (ai->wnum < bj->wnum+offset) {
ai++;
}
else
{
int np=(ai->wnum-1)%16+1+offset;
if (np>0 && np<17)
sum+=ai->weight * bj->weight;
ai++;
bj++;
}
}
return((double)sum);
}
double CSVM::sprod_ss2(SVM_WORD *a,SVM_WORD*b,int offset)
{
register FVAL sum=0;
register SVM_WORD *ai,*bj;
ai=a;
bj=b;
while (ai->wnum && bj->wnum) {
if(ai->wnum > bj->wnum+offset) {
bj++;
}
else if (ai->wnum < bj->wnum+offset) {
ai++;
}
else
{
int np=ai->wnum+offset;
if (np>0 && np<257)
sum+=ai->weight * bj->weight;
ai++;
bj++;
}
}
return((double)sum);
}
/* compute length of weight vector */
double CSVM::model_length_s(MODEL *model,KERNEL_PARM *kernel_parm)
{
register long i,j;
register double sum=0,alphai;
register DOC *supveci;
for(i=1;i<model->sv_num;i++) {
alphai=model->alpha[i];
supveci=model->supvec[i];
for(j=1;j<model->sv_num;j++) {
sum+=alphai*model->alpha[j]
*kernel(kernel_parm,supveci,model->supvec[j]);
}
}
return(sqrt(sum));
}
void CSVM::clear_vector_n(double *vec,long n)
{
register long i;
for(i=0;i<=n;i++) vec[i]=0;
}
void CSVM::add_vector_ns(double *vec_n,SVM_WORD *vec_s,double faktor)
{
register SVM_WORD *ai;
ai=vec_s;
while (ai->wnum) {
vec_n[ai->wnum]+=(faktor*ai->weight);
ai++;
}
}
double CSVM::sprod_ns(double *vec_n,SVM_WORD *vec_s)
{
register double sum=0;
register SVM_WORD *ai;
ai=vec_s;
while (ai->wnum) {
sum+=(vec_n[ai->wnum]*ai->weight);
ai++;
}
return(sum);
}
/* compute weight vector in linear case and add to model*/
void CSVM::add_weight_vector_to_linear_model(MODEL *model)
{
long i;
model->lin_weights=(double *)my_malloc(sizeof(double)*(model->totwords+1));
clear_vector_n(model->lin_weights,model->totwords);
for(i=1;i<model->sv_num;i++) {
add_vector_ns(model->lin_weights,(model->supvec[i])->words,
model->alpha[i]);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -