📄 kl.c
字号:
/* Weight-setting and scoring for Kuback-Leiber classification *//* Copyright (C) 1997 Andrew McCallum Written by: Andrew Kachites McCallum <mccallum@cs.cmu.edu> This file is part of the Bag-Of-Words Library, `libbow'. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation, version 2. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */#include <bow/libbow.h>#include <math.h>/* For changing weight of unseen words. I really should implement `deleted interpolation' *//* M_EST_P summed over all words in the vocabulary must sum to 1.0! */#if 1/* This is the special case of the M-estimate that is `Laplace smoothing' */#define M_EST_M (barrel->wi2dvf->num_words)#define M_EST_P (1.0 / barrel->wi2dvf->num_words)#define WORD_PRIOR_COUNT 1.0#else#define M_EST_M (cdoc->word_count \ ? (((float)barrel->wi2dvf->num_words) / cdoc->word_count) \ : 1.0)#define M_EST_P (1.0 / barrel->wi2dvf->num_words)#endif/* Function to assign `Naive Bayes'-style weights to each element of each document vector. */voidbow_kl_set_weights (bow_barrel *barrel){ int ci; bow_cdoc *cdoc; int wi; /* a "word index" into WI2DVF */ int max_wi; /* the highest "word index" in WI2DVF. */ bow_dv *dv; /* the "document vector" at index WI */ int dvi; /* an index into the DV */ int weight_setting_num_words = 0; int total_num_words = 0; /* We assume that we have already called BOW_BARREL_NEW_VPC() on BARREL, so BARREL already has one-document-per-class. */ assert (!strcmp (barrel->method->name, "kl")); max_wi = MIN (barrel->wi2dvf->size, bow_num_words()); /* Get the total number of terms in each class; store this in CDOC->WORD_COUNT. */ /* Get the total number of unique terms in each class; store this in CDOC->NORMALIZER. */ /* Calculate the total number of occurrences of each word; store this int DV->IDF. */ for (ci = 0; ci < barrel->cdocs->length; ci++) { cdoc = bow_array_entry_at_index (barrel->cdocs, ci); cdoc->word_count = 0; cdoc->normalizer = 0; } for (wi = 0; wi < max_wi; wi++) { dv = bow_wi2dvf_dv (barrel->wi2dvf, wi); if (dv == NULL) continue; dv->idf = 0; for (dvi = 0; dvi < dv->length; dvi++) { cdoc = bow_array_entry_at_index (barrel->cdocs, dv->entry[dvi].di); cdoc->word_count += dv->entry[dvi].count; total_num_words += dv->entry[dvi].count; dv->idf += dv->entry[dvi].count; cdoc->normalizer++; } } for (wi = 0; wi < max_wi; wi++) { dv = bow_wi2dvf_dv (barrel->wi2dvf, wi); if (dv == NULL) continue; for (dvi = 0; dvi < dv->length; dvi++) { float pr_w_c; cdoc = bow_array_entry_at_index (barrel->cdocs, dv->entry[dvi].di); pr_w_c = (float)dv->entry[dvi].count / cdoc->word_count; } } /* Set the weights in the BARREL's WI2DVF so that they are equal to P(w|C), the probability of a word given a class. */ for (wi = 0; wi < max_wi; wi++) { double pr_w = 0.0; dv = bow_wi2dvf_dv (barrel->wi2dvf, wi); /* If the model doesn't know about this word, skip it. */ if (dv == NULL) continue; pr_w = ((double)dv->idf) / total_num_words; /* Now loop through all the elements, setting their weights */ for (dvi = 0; dvi < dv->length; dvi++) { double pr_w_c; double pr_w_not_c; double log_likelihood_ratio; cdoc = bow_array_entry_at_index (barrel->cdocs, dv->entry[dvi].di); /* Here CDOC->WORD_COUNT is the total number of words in the class */ /* We use Laplace Estimation. */ pr_w_c = ((double)dv->entry[dvi].count / (cdoc->word_count + cdoc->normalizer)); pr_w_c = (((double)dv->entry[dvi].count + 1) / (cdoc->word_count + barrel->wi2dvf->num_words)); pr_w_not_c = ((dv->idf - dv->entry[dvi].count + barrel->cdocs->length - 1) / (total_num_words - cdoc->word_count + (barrel->wi2dvf->num_words * (barrel->cdocs->length - 1)))); log_likelihood_ratio = log (pr_w_c / pr_w_not_c); dv->entry[dvi].weight = log_likelihood_ratio; dv->entry[dvi].weight = pr_w_c * log_likelihood_ratio; } weight_setting_num_words++; /* Set the IDF. Kl doesn't use it; make it have no effect */ dv->idf = 1.0; }#if 0 fprintf (stderr, "wi2dvf num_words %d, weight-setting num_words %d\n", barrel->wi2dvf->num_words, weight_setting_num_words);#endif}intbow_kl_score (bow_barrel *barrel, bow_wv *query_wv, bow_score *bscores, int bscores_len, int loo_class){ double *scores; /* will become prob(class), indexed over CI */ int ci; /* a "class index" (document index) */ int wvi; /* an index into the entries of QUERY_WV. */ int dvi; /* an index into a "document vector" */ float pr_w_c; /* P(w|C), prob a word is in a class */ int num_scores; /* number of entries placed in SCORES */ int query_word_count; double score_increment = 0; double pr_w_d;#define KL_AGAINST_UNCOND 0#if KL_AGAINST_UNCOND int total_num_words = 0; /* number of word occurrences in all classes */ int total_num_w = 0; /* number of WI occurrences in all classes */ double pr_w; /* unconditional probability of WI. */#endif int count_w_c; int count_c; int num_smoothes = 0; double entropy_d = 0; /* Allocate space to store scores for *all* classes (documents) */ scores = alloca (barrel->cdocs->length * sizeof (double)); query_word_count = 0; for (wvi = 0; wvi < query_wv->num_entries; wvi++) query_word_count += query_wv->entry[wvi].count;#if KL_AGAINST_UNCOND for (ci = 0; ci < barrel->cdocs->length; ci++) { bow_cdoc *cdoc = bow_array_entry_at_index (barrel->cdocs, ci); assert (cdoc->type == model); total_num_words += cdoc->word_count; }#endif /* Initialize the SCORES to the class prior probabilities. */ if (bow_print_word_scores) printf ("%s\n", "(CLASS PRIOR PROBABILIES)"); for (ci = 0; ci < barrel->cdocs->length; ci++) { bow_cdoc *cdoc = bow_array_entry_at_index (barrel->cdocs, ci); assert (cdoc->prior > 0 && cdoc->prior <= 1.0); scores[ci] = log (cdoc->prior) / query_word_count; } /* Loop over each word in the word vector QUERY_WV, putting its contribution into SCORES. */ for (wvi = 0; wvi < query_wv->num_entries; wvi++) { int wi; /* the word index for the word at WVI */ bow_dv *dv; /* the "document vector" for the word WI */ /* Get information about this word. */ wi = query_wv->entry[wvi].wi; dv = bow_wi2dvf_dv (barrel->wi2dvf, wi); /* If the model doesn't know about this word, skip it. OOV */ if (!dv) continue; if (bow_print_word_scores) printf ("%-30s (queryweight=%.8f)\n", bow_int2word (wi), query_wv->entry[wvi].weight * query_wv->normalizer); pr_w_d = (float)query_wv->entry[wvi].count / query_word_count; /* pr_w_d = 1.0 / query_wv->num_entries; xxx !!! */ entropy_d += pr_w_d * log (pr_w_d);#if KL_AGAINST_UNCOND /* Calculate the unconditional probability of word WI. */ for (dvi = 0; dvi < dv->length; dvi++) total_num_w += dv->entry[dvi].count; pr_w = (((float)total_num_w + M_EST_M * M_EST_P * barrel->cdocs->length) / (total_num_words + M_EST_M * barrel->cdocs->length));#endif /* Loop over all classes, putting this word's (WI's) contribution into SCORES. */ for (ci = 0, dvi = 0; ci < barrel->cdocs->length; ci++) { bow_cdoc *cdoc; cdoc = bow_array_entry_at_index (barrel->cdocs, ci); assert (cdoc->type == model); /* Assign PR_W_C to P(w|C), either using a DV entry, or, if there is no DV entry for this class, using M-estimate smoothing */ if (dv) while (dvi < dv->length && dv->entry[dvi].di < ci) dvi++; if (dv && dvi < dv->length && dv->entry[dvi].di == ci) { /* The count for this word in this class is non-zero. */ if (loo_class == ci) { /* xxx This is not exactly right, because BARREL->WI2DVF->NUM_WORDS might have changed with the removal of QUERY_WV's document. */ pr_w_c = ((float) ((M_EST_M * M_EST_P) + dv->entry[dvi].count - query_wv->entry[wvi].count) / (M_EST_M + cdoc->word_count - query_wv->entry[wvi].count)); if (pr_w_c <= 0) bow_error ("A negative word probability was calculated.\n" "This can happen if you are using " "--test-files-loo and the test files are\n" "not being lexed in the same way as they " "were when the model was built.\n" "Value is %f\n" "Word is `%s'\n", pr_w_c, bow_int2word (wi)); count_w_c = dv->entry[dvi].count-query_wv->entry[wvi].count; count_c = cdoc->word_count - query_wv->entry[wvi].count; } else { pr_w_c = ((float) ((M_EST_M * M_EST_P) + dv->entry[dvi].count) / (M_EST_M + cdoc->word_count)); if (pr_w_c <= 0) bow_error ("A negative word probability was calculated. " "This can happen if you are using\n" "--test-files-loo and the test files are " "not being lexed in the same way as they\n" "were when the model was built."); assert (pr_w_c > 0 && pr_w_c <= 1); count_w_c = dv->entry[dvi].count; count_c = cdoc->word_count;#define WITTEN_BELL 1#if WITTEN_BELL /* Witten-Bell */ pr_w_c = ((float)dv->entry[dvi].count / (cdoc->word_count + cdoc->normalizer));#endif } } else { /* The count for this word in this class is zero. */ num_smoothes++; if (loo_class == ci) { /* xxx This is not exactly right, because BARREL->WI2DVF->NUM_WORDS might have changed with the removal of QUERY_WV's document. */ pr_w_c = ((M_EST_M * M_EST_P) / (M_EST_M + cdoc->word_count - query_wv->entry[wvi].count)); assert (pr_w_c > 0 && pr_w_c <= 1); count_w_c = 0; count_c = cdoc->word_count - query_wv->entry[wvi].count; } else { pr_w_c = ((M_EST_M * M_EST_P) / (M_EST_M + cdoc->word_count)); assert (pr_w_c > 0 && pr_w_c <= 1); count_w_c = 0; count_c = cdoc->word_count;#if WITTEN_BELL /* Witten-Bell */ pr_w_c = (cdoc->normalizer / ((cdoc->word_count + cdoc->normalizer) * (barrel->wi2dvf->num_words - cdoc->normalizer)));#endif } } assert (pr_w_c > 0 && pr_w_c <= 1);#if KL_AGAINST_UNCOND /* score_increment = pr_w_d * log (pr_w_c / (pr_w)); */ score_increment = pr_w_d * log (pr_w_c / (pr_w * pr_w_d));#else /* score_increment = pr_w_d * log (pr_w_c); */ score_increment = pr_w_d * log (pr_w_c / pr_w_d);#endif assert (score_increment == score_increment); scores[ci] += score_increment; assert (scores[ci] == scores[ci]); if (bow_print_word_scores) printf (" %5d/%-6d %8.2e %7.4f %-25s %8.5f\n", count_w_c, count_c, pr_w_c, score_increment, (strrchr (cdoc->filename, '/') ? : cdoc->filename), scores[ci]); } } /* Now SCORES[] contains a KL divergence for each class. */#if 1 /* Normalize the SCORES so they all sum to minus one. */ { double scores_sum = 0; for (ci = 0; ci < barrel->cdocs->length; ci++) scores_sum += scores[ci]; if (scores_sum) { for (ci = 0; ci < barrel->cdocs->length; ci++) { scores[ci] /= -scores_sum; assert (scores[ci] == scores[ci]); /* assert (scores[ci] > 0); */ } } else { for (ci = 0; ci < barrel->cdocs->length; ci++) scores[ci] = -1.0 / barrel->cdocs->length; } }#endif /* Return the SCORES by putting them (and the `class indices') into SCORES in sorted order. */ { num_scores = 0; for (ci = 0; ci < barrel->cdocs->length; ci++) { if (num_scores < bscores_len || bscores[num_scores-1].weight < scores[ci]) { /* We are going to put this score and CI into SCORES because either: (1) there is empty space in SCORES, or (2) SCORES[CI] is larger than the smallest score there currently. */ int dsi; /* an index into SCORES */ if (num_scores < bscores_len) num_scores++; dsi = num_scores - 1; /* Shift down all the entries that are smaller than SCORES[CI] */ for (; dsi > 0 && bscores[dsi-1].weight < scores[ci]; dsi--) bscores[dsi] = bscores[dsi-1]; /* Insert the new score */ bscores[dsi].weight = scores[ci]; bscores[dsi].di = ci; } } }#if 0 printf ("kl %8.6f %8.6f %d %d %8.6f %8.6f ", -bscores[0].weight * scores_sum, /* unnormalized high score */ bscores[0].weight, /* normalized high score */ query_word_count, /* document length */ query_wv->num_entries, /* num unique words in query */ (float)num_smoothes/query_word_count, entropy_d);#endif return num_scores;}bow_method bow_method_kl = { "kl", bow_kl_set_weights, 0, /* no weight scaling function */ NULL, /* bow_barrel_normalize_weights_by_summing, */ bow_barrel_new_vpc_merge_then_weight, bow_barrel_set_vpc_priors_by_counting, bow_kl_score, bow_wv_set_weights_to_count, NULL, /* no need for extra weight normalization */ 0};void _register_method_kl () __attribute__ ((constructor));void _register_method_kl (){ static int done = 0; if (done) return; bow_method_register_with_name (&bow_method_kl, "kl"); done = 1;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -