📄 rfc3107.txt
字号:
RFC 3107 Carrying Label Information in BGP-4 May 2001 A BGP speaker that is capable of handling multiple routes to a destination (as described above) should use the Capabilities Optional Parameter, as defined in [BGP-CAP], to inform its peers about this capability. The value of this capability is 4.6. When the BGP Peers are not Directly Adjacent Consider the following LSR topology: A--B--C--D. Suppose that D distributes a label L to A. In this topology, A cannot simply push L onto a packet's label stack, and then send the resulting packet to B. D must be the only LSR that sees L at the top of the stack. Before A sends the packet to B, it must push on another label, which was distributed by B. B must replace this label with yet another label, which was distributed by C. In other words, there must be an LSP between A and D. If there is no such LSP, A cannot make use of label L. This is true any time labels are distributed between non-adjacent LSRs, whether that distribution is done by BGP or by some other method. This document does NOT specify any procedure for ensuring in real time that label distribution between non-adjacent LSRs is done only when the appropriate MPLS infrastructure exists in the network or networks connecting the two LSRs. Ensuring that the proper infrastructure exists is an issue for network management and operation.7. Security Considerations When an LSR A is directly connected to an LSR B via a point-to-point interface, then when A receives packets over that interface, it knows that they come from B. This makes it easy for A to discard any packets from B whose top labels are not among the labels that A distributed to B. That is, A can easily ensure that B only uses those labels which it is entitled to use. This technique can be used to prevent "label spoofing", i.e., the situation in which an LSR imposes a label which has not been properly distributed to it. The procedures discussed in this document would commonly be used when the label distribution peers are separated not merely by a point-to- point link, but by an MPLS network. This means that when an LSR A processes a labeled packet, it really has no way to determine which other LSR B pushed on the top label. Hence it cannot tell whether the label is one which B is entitled to use. In fact, when Route Reflectors are in use, A may not even know the set of LSRs which receive its label mappings. So the previous paragraph's technique for preventing label spoofing does not apply.Rekhter & Rosen Standards Track [Page 5]RFC 3107 Carrying Label Information in BGP-4 May 2001 It is possible though to use other techniques to avoid label spoofing problems. If, for example, one never accepts labeled packets from the network's "external" interfaces, and all the BGP-distributed labels are advertised via IBGP, then there is no way for an untrusted router to put a labeled packet into the network. One can generally assume that one's IBGP peers (or the IBGP peers of one's Route Reflector) will not attempt label spoofing, since they are all under the control of a single administration. This condition can actually be weakened significantly. One doesn't need to refuse to accept all labeled packets from external interfaces. One just needs to make sure that any labeled packet received on an external interface has a top label which was actually distributed out that interface. Then a label spoofing problem would only exist if there are both trusted and untrusted systems out the same interface. One way to avoid this problem is simply to avoid this situation.8. Acknowledgments Thanks to Ravi Chandra, Enke Chen, Srihari Ramachandra, Eric Gray and Liam Casey for their comments.9. References [BGP-4] Rekhter, Y. and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC 1771, March 1995. [BGP-CAP] Chandra, R. and J. Scudder, "Capabilities Advertisement with BGP-4", RFC 2842, May 2000. [BGP-MP] Bates, T., Rekhter, Y, Chandra, R. and D. Katz, "Multiprotocol Extensions for BGP-4", RFC 2858, June 2000. [BGP-RR] Bates, T. and R. Chandra, "BGP Route Reflection: An alternative to full mesh IBGP", RFC 1966, June 1996. [MPLS-ARCH] Rosen, E., Vishwanathan, A. and R. Callon, "Multiprotocol Label Switching Architecture" RFC 3031, January 2001. [MPLS-ENCAPS] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T. and A. Conta, "MPLS Label Stack Encoding", RFC 3032, January 2001.Rekhter & Rosen Standards Track [Page 6]RFC 3107 Carrying Label Information in BGP-4 May 200110. Authors' Addresses Yakov Rekhter Juniper Networks 1194 N. Mathilda Avenue Sunnyvale, CA 94089 EMail: yakov@juniper.net Eric Rosen Cisco Systems, Inc. 250 Apollo Drive Chelmsford, MA 01824 EMail: erosen@cisco.comRekhter & Rosen Standards Track [Page 7]RFC 3107 Carrying Label Information in BGP-4 May 200111. Full Copyright Statement Copyright (C) The Internet Society (2001). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Rekhter & Rosen Standards Track [Page 8]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -