📄 bpnet.cpp
字号:
for(int c = 1; c < number_of_inputs; c++)
{input_value[c] = 0.0;}
activation = 0.0;
}
void Interface_units::recompute_activation(int winning_cluster)
{activation = input_value[0] * input_weight_vector[winning_cluster];}
void Interface_units::calculate_output_value(int G1)
{
float feedback_signal, node_output, two_thirds_rule;
feedback_signal = 0.0;
// calculate feedback signal through use of weighted sum
for(int f = 0; f < number_of_inputs-1; f++)
{feedback_signal+=input_weight_vector[f]*input_value[f+1];}
two_thirds_rule = feedback_signal + input_value[0] + float(G1);
// use Two Thirds Rule to determine node output
if(two_thirds_rule >= 2.0) {node_output = 1.0;} else {node_output = 0.0;}
// establish output vector to cluster units
for(int p = 0; p < number_of_outputs; p++)
{output_value[p] = node_output;}
}
Cluster_units::Cluster_units()
{cluster_tag = 0;}
void Cluster_units::establish_input_weight_vector_array(void)
{input_weight_vector = new float[number_of_inputs];}
void Cluster_units::initialize_inputs_and_weights(void)
{
for(int c = 0; c < number_of_inputs; c++)
{input_weight_vector[c] = 1.0 / (1.0 + number_of_inputs);}
}
void Cluster_units::calculate_net_input(void)
{
net_input = 0.0;
for(int n = 0; n < number_of_inputs; n++)
{net_input += input_value[n] * input_weight_vector[n];}
}
void Cluster_units::establish_node_output(void)
{
for(int oput = 0; oput < number_of_outputs - 1; oput++)
if(activation >= 0.0)
{output_value[oput] = activation;}
else
{output_value[oput] = 0.0;}
}
ART_Topology::ART_Topology()
{
clustercount = 0;
clusterange = 0;
resetcount = 0;
}
ART_Topology::~ART_Topology()
{
delete [] node_in_input_layer;
delete [] node_in_interface_layer;
delete [] node_in_cluster_layer;
}
void ART_Topology::establish_net_topology(void)
{
weight_update_parameter = 2.0;
node_in_input_layer = new Input_units[dimensions_of_signal];
node_in_interface_layer = new Interface_units[dimensions_of_signal];
node_in_cluster_layer = new Cluster_units[number_of_cluster_units];
// Establish interface layer of ART1 network
for(int I = 0; I < dimensions_of_signal; I++)
{
node_in_interface_layer[I].number_of_inputs = number_of_cluster_units + 1;
node_in_interface_layer[I].number_of_outputs = number_of_cluster_units;
node_in_interface_layer[I].establish_input_output_arrays();
node_in_interface_layer[I].establish_input_weight_vector_array();
node_in_interface_layer[I].initialize_inputs_and_weights();
}
// Establish cluster layer of ART1 network
for(int C = 0; C < number_of_cluster_units; C++)
{
node_in_cluster_layer[C].number_of_inputs = dimensions_of_signal;
node_in_cluster_layer[C].number_of_outputs = dimensions_of_signal + 1;
node_in_cluster_layer[C].establish_input_output_arrays();
node_in_cluster_layer[C].establish_input_weight_vector_array();
node_in_cluster_layer[C].initialize_inputs_and_weights();
}
}
void ART_Topology::upload_network(void)
{
char getname[13];
ifstream get_ptr;
int netid, node, dim;
int dolock = 0;
do
{
cout << "\n\n";
cout << "Please enter the name of the file which holds the ART1 Network" << "\n";
cin >> getname; cout << "\n";
get_ptr.open(getname, ios::in);
get_ptr >> netid;
if(netid == 2) {dolock = 1;}
else
{
cout << "Error** file contents do not match ART1 specifications" << "\n";
cout << "try again" << "\n";
get_ptr.close();
}
} while(dolock <= 0);
get_ptr >> dimensions_of_signal;
get_ptr >> weight_update_parameter;
get_ptr >> vigilance_parameter;
get_ptr >> clusterange;
get_ptr >> clustercount;
get_ptr >> number_of_cluster_units;
node_in_input_layer = new Input_units[dimensions_of_signal];
node_in_interface_layer = new Interface_units[dimensions_of_signal];
node_in_cluster_layer = new Cluster_units[number_of_cluster_units];
for(node = 0; node < dimensions_of_signal; node++)
{
node_in_interface_layer[node].number_of_inputs = number_of_cluster_units + 1;
node_in_interface_layer[node].number_of_outputs = number_of_cluster_units;
node_in_interface_layer[node].establish_input_output_arrays();
node_in_interface_layer[node].establish_input_weight_vector_array();
node_in_interface_layer[node].initialize_inputs_and_weights();
for(dim = 1; dim < number_of_cluster_units + 1; dim++)
{get_ptr >> node_in_interface_layer[node].input_weight_vector[dim];}
}
for(node = 0; node < number_of_cluster_units; node++)
{
node_in_cluster_layer[node].number_of_inputs = dimensions_of_signal;
node_in_cluster_layer[node].number_of_outputs = dimensions_of_signal + 1;
node_in_cluster_layer[node].establish_input_output_arrays();
node_in_cluster_layer[node].establish_input_weight_vector_array();
node_in_cluster_layer[node].initialize_inputs_and_weights();
get_ptr >> node_in_cluster_layer[node].cluster_tag;
for(dim = 0; dim < dimensions_of_signal; dim++)
{get_ptr >> node_in_cluster_layer[node].input_weight_vector[dim];}
}
get_ptr.close();
}
void ART_Topology::transmit_pattern_to_interface(void)
{
for(int d = 0; d < dimensions_of_signal; d++)
{
node_in_interface_layer[d].input_value[0] = node_in_input_layer[d].signal_value;
node_in_interface_layer[d].activation = node_in_input_layer[d].signal_value;
}
}
void ART_Topology::transmit_pattern_to_cluster(void)
{
int c;
for(int d = 0; d < dimensions_of_signal; d++)
{
for(c = 0; c < number_of_cluster_units; c++)
{node_in_cluster_layer[c].input_value[d] = node_in_input_layer[d].signal_value;}
}
}
void ART_Topology::broadcast_output_to_cluster_layer(void)
{
int Gain_one;
int cluster_active = 0;
int d, c;
for(c = 0; c < number_of_cluster_units; c++)
{if(node_in_cluster_layer[c].activation == 1.0) {cluster_active = 1;} }
compute_norm_of_input_vector();
if((cluster_active != 1) && (norm_of_input_vector > 0.0))
{Gain_one = 1;} else {Gain_one = 0;}
// establish interface output vector
for(d = 0; d < dimensions_of_signal; d++)
{node_in_interface_layer[d].calculate_output_value(Gain_one);}
//transmit interface output to units in cluster layer
for(d = 0; d < dimensions_of_signal; d++)
{
for(c = 0; c < number_of_cluster_units; c++)
{node_in_cluster_layer[c].input_value[d] = node_in_interface_layer[d].output_value[c];}
}
}
void ART_Topology::cluster_nodes_compete_for_activation(int train_or_test)
{
int d, cluster;
float champion = 0.0;
for(cluster = 0; cluster < clusterange + 1; cluster++)
{
if(node_in_cluster_layer[cluster].activation != -1.0)
{
node_in_cluster_layer[cluster].calculate_net_input();
if(node_in_cluster_layer[cluster].net_input > champion)
{
champion = node_in_cluster_layer[cluster].net_input;
cluster_champ = cluster;
}
}
}
if((node_in_cluster_layer[cluster_champ].cluster_tag == 0) && (train_or_test < 2))
{
node_in_cluster_layer[cluster_champ].cluster_tag = clustercount + 1;
clustercount = clustercount + 1;
}
if(train_or_test < 2)
{
for(cluster = 0; cluster < clusterange + 1; cluster++)
{
if(cluster == cluster_champ)
{node_in_cluster_layer[cluster].activation = 1.0;}
else
{
if(node_in_cluster_layer[cluster].activation != -1.0)
{node_in_cluster_layer[cluster].activation = 0.0;}
}
node_in_cluster_layer[cluster].establish_node_output();
// send output signals to Interface layer
for(d = 0; d < dimensions_of_signal; d++)
{node_in_interface_layer[d].input_value[cluster + 1] = node_in_cluster_layer[cluster].output_value[d];}
}
}
}
void ART_Topology::compute_norm_of_activation_vector(void)
{
norm_of_activation_vector = 0.0;
for(int d = 0; d < dimensions_of_signal; d++)
{norm_of_activation_vector += node_in_interface_layer[d].activation;}
compute_norm_of_input_vector();
}
void ART_Topology::compute_norm_of_input_vector(void)
{
norm_of_input_vector = 0.0;
for(int d = 0; d < dimensions_of_signal; d++)
{norm_of_input_vector += node_in_input_layer[d].signal_value;}
}
void ART_Topology::recompute_activation_vector_of_interface_layer(void)
{
for(int d = 0; d < dimensions_of_signal; d++)
{node_in_interface_layer[d].recompute_activation(cluster_champ);}
}
void ART_Topology:: update_the_network(void)
{
recompute_activation_vector_of_interface_layer();
compute_norm_of_activation_vector();
float ratio_test = norm_of_activation_vector / norm_of_input_vector;
if(ratio_test < vigilance_parameter)
{
node_in_cluster_layer[cluster_champ].activation = -1.0;
reset_value = 1;
resetcount += reset_value;
if(resetcount == number_of_cluster_units - 1)
{
clusterange = clusterange + 1;
if(clusterange > number_of_cluster_units)
{clusterange = number_of_cluster_units;}
}
}
else
{
// update the weights of the champion cluster unit
for(int u = 0; u < node_in_cluster_layer[cluster_champ].number_of_inputs; u++)
{node_in_cluster_layer[cluster_champ].input_weight_vector[u] = (weight_update_parameter * node_in_interface_layer[u].activation * node_in_cluster_layer[cluster_champ].input_weight_vector[u]) / ((weight_update_parameter - 1.0) + norm_of_activation_vector);}
for(int n = 0; n < dimensions_of_signal; n++)
{node_in_interface_layer[n].input_weight_vector[cluster_champ] = node_in_interface_layer[n].input_weight_vector[cluster_champ] * node_in_interface_layer[n].activation;}
reset_value = 0;
resetcount = 0;
}
}
void ART_Topology::set_cluster_activation_to_zero(void)
{
for(int cnode = 0; cnode < clusterange + 1; cnode++)
{node_in_cluster_layer[cnode].activation = 0.0;}
}
void ART_Topology::savenet(void)
{
char savename[13];
ofstream save_ptr;
int node, dim;
cout << "\n\n";
cout << "Please enter the name of the file which will hold the ART network"<<"\n";
cin >> savename; cout <<"\n";
save_ptr.open(savename, ios::out);
save_ptr << 2 << "\n"; //network identifier number
save_ptr << dimensions_of_signal << "\n";
save_ptr << weight_update_parameter << "\n";
save_ptr << vigilance_parameter << "\n";
save_ptr << clusterange << "\n";
save_ptr << clustercount << "\n";
save_ptr << number_of_cluster_units << "\n";
for(node = 0; node < dimensions_of_signal; node++)
{
for(dim = 1; dim < number_of_cluster_units + 1; dim++)
{save_ptr << node_in_interface_layer[node].input_weight_vector[dim] << " ";}
save_ptr << "\n";
}
for(node = 0; node < number_of_cluster_units; node++)
{
save_ptr << node_in_cluster_layer[node].cluster_tag << "\n";
for(dim = 0; dim < dimensions_of_signal; dim++)
{save_ptr << node_in_cluster_layer[node].input_weight_vector[dim] << " ";}
save_ptr << "\n";
}
save_ptr.close();
}
void ART_Training_Data::load_data_into_array(void)
{
int d, i;
float dimensions;
// open the file containing the data
ifstream Afile_ptr; // pointer to a file
Afile_ptr.open(filename, ios::in);
//create a dynamic array to hold the specified number of samples
number_of_samples = new sample_data[sample_number];
for(i = 0; i < sample_number; i++)
{number_of_samples[i].data_in_sample = new float[signal_dimensions];}
// read in data from file and place in array
for(i = 0; i < sample_number; i++)
{
for(d = 0; d < signal_dimensions; d++)
{
Afile_ptr >> dimensions;
number_of_samples[i].data_in_sample[d] = dimensions;
}
}
Afile_ptr.close();
}
void ART_Training_Data :: determine_sample_number(void)
{
ifstream dfile_ptr; // pointer to a file
dfile_ptr.open(filename, ios::in);
float hold;
int lock = 1;
sample_number = 0;
do
{
if(dfile_ptr.eof()){lock = 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -