📄 geometryprimitives.xsd
字号:
<complexType name="CircleByCenterPointType"> <annotation> <documentation>A CircleByCenterPoint is an ArcByCenterPoint with identical start and end angle to form a full circle. Again, this represenation can be used only in 2D.</documentation> </annotation> <complexContent> <extension base="gml:ArcByCenterPointType"/> </complexContent> </complexType> <!-- ================================================================================ --> <element name="OffsetCurve" type="gml:OffsetCurveType" substitutionGroup="gml:_CurveSegment"/> <!-- ================================================================================ --> <complexType name="OffsetCurveType"> <annotation> <documentation>An offset curve is a curve at a constant distance from the basis curve. They can be useful as a cheap and simple alternative to constructing curves that are offsets by definition.</documentation> </annotation> <complexContent> <extension base="gml:AbstractCurveSegmentType"> <sequence> <element name="offsetBase" type="gml:CurvePropertyType"> <annotation> <documentation>offsetBase is a reference to thecurve from which this curve is define as an offset.</documentation> </annotation> </element> <element name="distance" type="gml:LengthType"> <annotation> <documentation>distance is the distance at which the offset curve is generated from the basis curve. In 2D systems, positive distances are to be to the left of the basis curve, and the negative distances are to be to the right of the basis curve.</documentation> </annotation> </element> <element name="refDirection" type="gml:VectorType" minOccurs="0"> <annotation> <documentation>refDistance is used to define the vector direction of the offset curve from the basis curve. It can be omitted in the 2D case, where the distance can be positive or negative. In that case, distance defines left side (positive distance) or right side (negative distance) with respect to the tangent to the basis curve. In 3D the basis curve shall have a well defined tangent direction for every point. The offset curve at any point in 3D, the basis curve shall have a well-defined tangent direction for every point. The offset curve at any point (parameter) on the basis curve c is in the direction - - - - s = v x t where v = c.refDirection() and - t = c.tangent() - For the offset direction to be well-defined, v shall not on any point of the curve be in the same, or opposite, direction as - t. The default value of the refDirection shall be the local co-ordinate axis vector for elevation, which indicates up for the curve in a geographic sense. NOTE! If the refDirection is the positive tangent to the local elevation axis ("points upward"), then the offset vector points to the left of the curve when viewed from above.</documentation> </annotation> </element> </sequence> </extension> </complexContent> </complexType> <!-- ====================================================== --> <element name="AffinePlacement" type="gml:AffinePlacementType"/> <!-- ====================================================== --> <complexType name="AffinePlacementType"> <annotation> <documentation>A placement takes a standard geometric construction and places it in geographic space. It defines a transformation from a constructive parameter space to the co-ordinate space of the co-ordinate reference system being used. Parameter spaces in formulae in this International Standard are given as (u, v) in 2D and(u, v, w) in 3D. Co-ordinate reference systems positions are given in formulae, in this International Standard, by either (x, y) in 2D, or (x, y, z) in 3D. Affine placements are defined by linear transformations from parameter space to the target co-ordiante space. 2-dimensional Cartesian parameter space,(u,v) transforms into 3-dimensional co- ordinate reference systems,(x,y,z) by using an affine transformation,(u,v)->(x,y,z) which is defined : x ux vx x0 u y = uy vy + y0 v x uz vz z0 Then, given this equation, the location element of the AffinePlacement is the direct position (x0, y0, z0), which is the target position of the origin in (u, v). The two reference directions (ux, uy, uz) and (vx, vy, vz) are the target directions of the unit vectors at the origin in (u, v).</documentation> </annotation> <sequence> <element name="location" type="gml:DirectPositionType"> <annotation> <documentation>The location property gives the target of the parameter space origin. This is the vector (x0, y0, z0) in the formulae above.</documentation> </annotation> </element> <element name="refDirection" type="gml:VectorType" maxOccurs="unbounded"> <annotation> <documentation>The attribute refDirection gives the target directions for the co-ordinate basis vectors of the parameter space. These are the columns of the matrix in the formulae given above. The number of directions given shall be inDimension. The dimension of the directions shall be outDimension.</documentation> </annotation> </element> <element name="inDimension" type="positiveInteger"> <annotation> <documentation>Dimension of the constructive parameter space.</documentation> </annotation> </element> <element name="outDimension" type="positiveInteger"> <annotation> <documentation>Dimension of the co-ordinate space.</documentation> </annotation> </element> </sequence> </complexType> <!-- = global element in "_CurveSegment" substitution group ========================== --> <element name="Clothoid" type="gml:ClothoidType" substitutionGroup="gml:_CurveSegment"/> <!-- ======================================================================= --> <complexType name="ClothoidType"> <annotation> <documentation>A clothoid, or Cornu's spiral, is plane curve whose curvature is a fixed function of its length. In suitably chosen co-ordinates it is given by Fresnel's integrals. x(t) = 0-integral-t cos(AT*T/2)dT y(t) = 0-integral-t sin(AT*T/2)dT This geometry is mainly used as a transition curve between curves of type straight line to circular arc or circular arc to circular arc. With this curve type it is possible to achieve a C2-continous transition between the above mentioned curve types. One formula for the Clothoid is A*A = R*t where A is constant, R is the varying radius of curvature along the the curve and t is the length along and given in the Fresnel integrals.</documentation> </annotation> <complexContent> <extension base="gml:AbstractCurveSegmentType"> <sequence> <element name="refLocation"> <complexType> <sequence> <element ref="gml:AffinePlacement"> <annotation> <documentation>The "refLocation" is an affine mapping that places the curve defined by the Fresnel Integrals into the co-ordinate reference system of this object.</documentation> </annotation> </element> </sequence> </complexType> </element> <element name="scaleFactor" type="decimal"> <annotation> <documentation>The element gives the value for the constant in the Fresnel's integrals.</documentation> </annotation> </element> <element name="startParameter" type="double"> <annotation> <documentation>The startParameter is the arc length distance from the inflection point that will be the start point for this curve segment. This shall be lower limit used in the Fresnel integral and is the value of the constructive parameter of this curve segment at its start point. The startParameter can either be positive or negative. NOTE! If 0.0 (zero), lies between the startParameter and the endParameter of the clothoid, then the curve goes through the clothoid's inflection point, and the direction of its radius of curvature, given by the second derivative vector, changes sides with respect to the tangent vector. The term length distance for the</documentation> </annotation> </element> <element name="endParameter" type="double"> <annotation> <documentation>The endParameter is the arc length distance from the inflection point that will be the end point for this curve segment. This shall be upper limit used in the Fresnel integral and is the value of the constructive parameter of this curve segment at its start point. The startParameter can either be positive or negative.</documentation> </annotation> </element> </sequence> </extension> </complexContent> </complexType> <!-- = global element in "_CurveSegment" substitution group = --> <element name="GeodesicString" type="gml:GeodesicStringType" substitutionGroup="gml:_CurveSegment"/> <!-- ======================================================== --> <complexType name="GeodesicStringType"> <annotation>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -