⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geometryprimitives.xsd

📁 联合国农粮署牵头开发的geonetwork源代码最新版
💻 XSD
📖 第 1 页 / 共 5 页
字号:
	<complexType name="CircleByCenterPointType">		<annotation>			<documentation>A CircleByCenterPoint is an ArcByCenterPoint with identical start and end angle to form a full circle. Again, this represenation can be used only in 2D.</documentation>		</annotation>		<complexContent>			<extension base="gml:ArcByCenterPointType"/>		</complexContent>	</complexType>	<!-- ================================================================================ -->	<element name="OffsetCurve" type="gml:OffsetCurveType" substitutionGroup="gml:_CurveSegment"/>	<!-- ================================================================================ -->	<complexType name="OffsetCurveType">		<annotation>			<documentation>An offset curve is a curve at a constant		 distance from the basis curve. They can be useful as a cheap		 and simple alternative to constructing curves that are offsets			 by definition.</documentation>		</annotation>		<complexContent>			<extension base="gml:AbstractCurveSegmentType">				<sequence>					<element name="offsetBase" type="gml:CurvePropertyType">						<annotation>							<documentation>offsetBase is a reference to thecurve from which this							 curve is define	as an offset.</documentation>						</annotation>					</element>					<element name="distance" type="gml:LengthType">						<annotation>							<documentation>distance is the distance at which the							 offset curve is generated from the basis curve. In 2D systems, positive distances							 are to be to the left of the basis curve, and the negative distances are to be to the 							 right of the basis curve.</documentation>						</annotation>					</element>					<element name="refDirection" type="gml:VectorType" minOccurs="0">						<annotation>							<documentation>refDistance is used to define the vector       direction of the offset curve from the basis curve. It can       be omitted in the 2D case, where the distance can be        positive or negative. In that case, distance defines left       side (positive distance) or right side (negative distance)       with respect to the tangent to the basis curve.       In 3D the basis curve shall have a well defined tangent        direction for every point. The offset curve at any point        in 3D, the basis curve shall have a well-defined tangent       direction for every point. The offset curve at any point       (parameter) on the basis curve c is in the direction       -   -   -         -                      s = v x t  where  v = c.refDirection()         and       -       t = c.tangent()                                                    -       For the offset direction to be well-defined, v shall not       on any point of the curve be in the same, or opposite,        direction as       -        t.       The default value of the refDirection shall be the local       co-ordinate axis vector for elevation, which indicates up for       the curve in a geographic sense.       NOTE! If the refDirection is the positive tangent to the       local elevation axis ("points upward"), then the offset       vector points to the left of the curve when viewed from       above.</documentation>						</annotation>					</element>				</sequence>			</extension>		</complexContent>	</complexType>	<!-- ====================================================== -->	<element name="AffinePlacement" type="gml:AffinePlacementType"/>	<!-- ====================================================== -->	<complexType name="AffinePlacementType">		<annotation>			<documentation>A placement takes a standard geometric   construction and places it in geographic space. It defines a   transformation from a constructive parameter space to the    co-ordinate space of the co-ordinate reference system being used.     Parameter spaces in formulae in this International Standard are    given as (u, v) in 2D and(u, v, w) in 3D. Co-ordinate reference    systems positions are given in formulae, in this International    Standard, by either (x, y) in 2D, or (x, y, z) in 3D.   Affine placements are defined by linear transformations from    parameter space to the target co-ordiante space. 2-dimensional    Cartesian parameter space,(u,v) transforms into 3-dimensional co-   ordinate reference systems,(x,y,z) by using an affine    transformation,(u,v)->(x,y,z) which is defined :	x	ux vx  	x0			 u	  	y =	uy vy   + y0			 v			x	uz vz	z0	   Then, given this equation, the location element of the    AffinePlacement is the direct position (x0, y0, z0), which is the   target position of the origin in (u, v). The two reference   directions (ux, uy, uz) and (vx, vy, vz) are the target        directions of the unit vectors at the origin in (u, v).</documentation>		</annotation>		<sequence>			<element name="location" type="gml:DirectPositionType">				<annotation>					<documentation>The location property gives      the target of the parameter space origin. This is the vector      (x0, y0, z0) in the formulae above.</documentation>				</annotation>			</element>			<element name="refDirection" type="gml:VectorType" maxOccurs="unbounded">				<annotation>					<documentation>The attribute refDirection gives the    target directions for the co-ordinate basis vectors of the  parameter space. These are the columns of the matrix in the formulae given above. The number of directions given shall be inDimension. The dimension of the directions shall be outDimension.</documentation>				</annotation>			</element>			<element name="inDimension" type="positiveInteger">				<annotation>					<documentation>Dimension of the constructive parameter      space.</documentation>				</annotation>			</element>			<element name="outDimension" type="positiveInteger">				<annotation>					<documentation>Dimension of the co-ordinate space.</documentation>				</annotation>			</element>		</sequence>	</complexType>	<!-- = global element in "_CurveSegment" substitution group ========================== -->	<element name="Clothoid" type="gml:ClothoidType" substitutionGroup="gml:_CurveSegment"/>	<!-- ======================================================================= -->	<complexType name="ClothoidType">		<annotation>			<documentation>A clothoid, or Cornu's spiral, is plane   curve whose curvature is a fixed function of its length.   In suitably chosen co-ordinates it is given by Fresnel's   integrals.    x(t) = 0-integral-t cos(AT*T/2)dT            y(t) = 0-integral-t sin(AT*T/2)dT      This geometry is mainly used as a transition curve between   curves of type straight line to circular arc or circular arc   to circular arc. With this curve type it is possible to    achieve a C2-continous transition between the above mentioned   curve types. One formula for the Clothoid is A*A = R*t where   A is constant, R is the varying radius of curvature along the   the curve and t is the length along and given in the Fresnel    integrals.</documentation>		</annotation>		<complexContent>			<extension base="gml:AbstractCurveSegmentType">				<sequence>					<element name="refLocation">						<complexType>							<sequence>								<element ref="gml:AffinePlacement">									<annotation>										<documentation>The "refLocation" is an affine mapping           that places  the curve defined by the Fresnel Integrals            into the co-ordinate reference system of this object.</documentation>									</annotation>								</element>							</sequence>						</complexType>					</element>					<element name="scaleFactor" type="decimal">						<annotation>							<documentation>The element gives the value for the       constant in the Fresnel's integrals.</documentation>						</annotation>					</element>					<element name="startParameter" type="double">						<annotation>							<documentation>The startParameter is the arc length       distance from the inflection point that will be the start       point for this curve segment. This shall be lower limit       used in the Fresnel integral and is the value of the       constructive parameter of this curve segment at its start       point. The startParameter can either be positive or       negative.        NOTE! If 0.0 (zero), lies between the startParameter and       the endParameter of the clothoid, then the curve goes       through the clothoid's inflection point, and the direction       of its radius of curvature, given by the second       derivative vector, changes sides with respect to the       tangent vector. The term length distance for the</documentation>						</annotation>					</element>					<element name="endParameter" type="double">						<annotation>							<documentation>The endParameter is the arc length       distance from the inflection point that will be the end       point for this curve segment. This shall be upper limit       used in the Fresnel integral and is the value of the       constructive parameter of this curve segment at its       start point. The startParameter can either be positive       or negative.</documentation>						</annotation>					</element>				</sequence>			</extension>		</complexContent>	</complexType>	<!-- = global element in "_CurveSegment" substitution group = -->	<element name="GeodesicString" type="gml:GeodesicStringType" substitutionGroup="gml:_CurveSegment"/>	<!-- ======================================================== -->	<complexType name="GeodesicStringType">		<annotation>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -