⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fft.c

📁 ears-0.32, linux下有用的语音信号处理工具包
💻 C
字号:
/************************************************************************* *                                                                       * *               ROUTINES IN THIS FILE:                                  * *                                                                       * *                      fft_float(): calling routine for complex fft     * *                                   of a real sequence                  * *                                                                       * *                      fft_pow(): calling routine for complex fft       * *                                   of a real sequence that concludes   * *                                   by computing power spectrum         * *                                                                       * *                      FAST(): actual fft routine                       * *                                                                       * * 			FR2TR(): radix 2 transform                       * *                                                                       * * 			FR4TR(): radix 4 transform                       * *                                                                       * * 			FORD1(): re-ordering routine                     * *                                                                       * * 			FORD2(): other re-ordering routine               * *                                                                       * *  			fastlog2(): just what it sounds like             * *                                                                       * ************************************************************************//*** Discrete Fourier analysis routine** from IEEE Programs for Digital Signal Processing** G. D. Bergland and M. T. Dolan, original authors** Translated from the FORTRAN with some changes by Paul Kube**** Modified to return the power spectrum by Chuck Wooters**** Modified again by Tony Robinson (ajr@eng.cam.ac.uk) Dec 92** Slight naming mods by N. Morgan, July 1993	(fft_chuck -> fft_pow)	( calling args long ll -> long winlength)			(long m -> long log2length)*/#include "others/mymath.h"#include <stdio.h>typedef float real;#define PI  3.1415926535897932#define PI8 0.392699081698724 /* PI / 8.0 */#define RT2 1.4142135623731  /* sqrt(2.0) */#define IRT2 0.707106781186548  /* 1.0/sqrt(2.0) */#define signum(i) (i < 0 ? -1 : i == 0 ? 0 : 1)int  FAST(real*, int);void FR2TR(int, real*, real*);void FR4TR(int, int, real*, real*, real*, real*);void FORD1(int, real*);void FORD2(int, real*);int  fastlog2(int);/*void fft_float(float *orig, float *fftd, int npoint) {  int i;  for(i = 0; i< npoint; i++) fftd[i] = orig[i];  if(FAST(fftd, npoint) == 0 ){    fprintf(stderr, "Error calculating fft.\n");    exit(1);  }}*/int fft_pow(float *orig, float *power, long winlength, long log2length) {  int i, j, k;  static real *temp = NULL;  static int npoints, npoints2;  char *funcname;  funcname = "fft_pow";  if(temp == 0) {    npoints  = (int) (pow(2.0,(real) log2length) + 0.5);    npoints2 = npoints / 2;    temp = (real*) malloc(npoints * sizeof(real));    if(temp == 0) {      fprintf(stderr, "Error mallocing memory in fft_pow()\n");      exit(1);    }  }  for(i=0;i<winlength;i++)    temp[i] = (real) orig[i];  for(i = winlength; i < npoints; i++)    temp[i] = 0.0;  if(FAST(temp, npoints) == 0 ){    fprintf(stderr,"Error calculating fft.\n");    exit(1);  }/*  fht__FPdUl(temp, log2length);*/    /* convert the complex data to power */  power[0] = temp[0]*temp[0];  power[npoints2] = temp[1]*temp[1];  /*    Only the first half of the power[] array is filled with data.     The second half would just be a mirror image of the first half.*/  for(i=1;i<npoints2;i++){    j=2*i;    k=2*i+1;    power[i] = temp[j]*temp[j]+temp[k]*temp[k];  }  return(0);}/*** FAST(b,n)** This routine replaces the real float vector b** of length n with its finite discrete fourier transform.** DC term is returned in b[0]; ** n/2th harmonic real part in b[1].** jth harmonic is returned as complex number stored as** b[2*j] + i b[2*j + 1] ** (i.e., remaining coefficients are as a DPCOMPLEX vector).** */int FAST(real *b, int n) {  real fn;  int i, in, nn, n2pow, n4pow, nthpo;    n2pow = fastlog2(n);  if(n2pow <= 0) return 0;  nthpo = n;  fn = nthpo;  n4pow = n2pow / 2;  /* radix 2 iteration required; do it now */    if(n2pow % 2) {    nn = 2;    in = n / nn;    FR2TR(in, b, b + in);  }  else nn = 1;  /* perform radix 4 iterations */  for(i = 1; i <= n4pow; i++) {    nn *= 4;    in = n / nn;    FR4TR(in, nn, b, b + in, b + 2 * in, b + 3 * in);  }  /* perform inplace reordering */  FORD1(n2pow, b);  FORD2(n2pow, b);  /* take conjugates */  for(i = 3; i < n; i += 2) b[i] = -b[i];  return 1;}/* radix 2 subroutine */void FR2TR(int in, real *b0, real *b1) {  int k;  real t;  for(k = 0; k < in; k++) {    t = b0[k] + b1[k];    b1[k] = b0[k] - b1[k];    b0[k] = t;  }}/* radix 4 subroutine */void FR4TR(int in, int nn, real *b0, real *b1, real *b2, real* b3) {  real arg, piovn, th2;  real *b4 = b0, *b5 = b1, *b6 = b2, *b7 = b3;  real t0, t1, t2, t3, t4, t5, t6, t7;  real r1, r5, pr, pi;  real c1, c2, c3, s1, s2, s3;    int j, k, jj, kk, jthet, jlast, ji, jl, jr, int4;  int L[16], L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15;  int j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14;  int k0, kl;    L[1] = nn / 4;	  for(k = 2; k < 16; k++) {  /* set up L's */    switch (signum(L[k-1] - 2)) {    case -1:      L[k-1]=2;    case 0:      L[k]=2;      break;    case 1:      L[k]=L[k-1]/2;    }  }  L15=L[1]; L14=L[2]; L13=L[3]; L12=L[4]; L11=L[5]; L10=L[6]; L9=L[7];  L8=L[8];  L7=L[9];  L6=L[10]; L5=L[11]; L4=L[12]; L3=L[13]; L2=L[14];  L1=L[15];  piovn = PI / nn;  ji=3;  jl=2;  jr=2;    for(j1=2;j1<=L1;j1+=2)  for(j2=j1;j2<=L2;j2+=L1)  for(j3=j2;j3<=L3;j3+=L2)  for(j4=j3;j4<=L4;j4+=L3)  for(j5=j4;j5<=L5;j5+=L4)  for(j6=j5;j6<=L6;j6+=L5)  for(j7=j6;j7<=L7;j7+=L6)  for(j8=j7;j8<=L8;j8+=L7)  for(j9=j8;j9<=L9;j9+=L8)  for(j10=j9;j10<=L10;j10+=L9)  for(j11=j10;j11<=L11;j11+=L10)  for(j12=j11;j12<=L12;j12+=L11)  for(j13=j12;j13<=L13;j13+=L12)  for(j14=j13;j14<=L14;j14+=L13)  for(jthet=j14;jthet<=L15;jthet+=L14)     {      th2 = jthet - 2;      if(th2<=0.0) 	{	  for(k=0;k<in;k++) 	    {	      t0 = b0[k] + b2[k];	      t1 = b1[k] + b3[k];	      b2[k] = b0[k] - b2[k];	      b3[k] = b1[k] - b3[k];	      b0[k] = t0 + t1;	      b1[k] = t0 - t1;	    }	  if(nn-4>0) 	    {	      k0 = in*4 + 1;	      kl = k0 + in - 1;	      for (k=k0;k<=kl;k++) 		{		  kk = k-1;		  pr = IRT2 * (b1[kk]-b3[kk]);		  pi = IRT2 * (b1[kk]+b3[kk]);		  b3[kk] = b2[kk] + pi;		  b1[kk] = pi - b2[kk];		  b2[kk] = b0[kk] - pr;		  b0[kk] = b0[kk] + pr;		}	    }	}      else 	{	  arg = th2*piovn;	  c1 = cos(arg);	  s1 = sin(arg);	  c2 = c1*c1 - s1*s1;	  s2 = c1*s1 + c1*s1;	  c3 = c1*c2 - s1*s2;	  s3 = c2*s1 + s2*c1;	  int4 = in*4;	  j0=jr*int4 + 1;	  k0=ji*int4 + 1;	  jlast = j0+in-1;	  for(j=j0;j<=jlast;j++) 	    {	      k = k0 + j - j0;	      kk = k-1; jj = j-1;	      r1 = b1[jj]*c1 - b5[kk]*s1;	      r5 = b1[jj]*s1 + b5[kk]*c1;	      t2 = b2[jj]*c2 - b6[kk]*s2;	      t6 = b2[jj]*s2 + b6[kk]*c2;	      t3 = b3[jj]*c3 - b7[kk]*s3;	      t7 = b3[jj]*s3 + b7[kk]*c3;	      t0 = b0[jj] + t2;	      t4 = b4[kk] + t6;	      t2 = b0[jj] - t2;	      t6 = b4[kk] - t6;	      t1 = r1 + t3;	      t5 = r5 + t7;	      t3 = r1 - t3;	      t7 = r5 - t7;	      b0[jj] = t0 + t1;	      b7[kk] = t4 + t5;	      b6[kk] = t0 - t1;	      b1[jj] = t5 - t4;	      b2[jj] = t2 - t7;	      b5[kk] = t6 + t3;	      b4[kk] = t2 + t7;	      b3[jj] = t3 - t6;	    }	  jr += 2;	  ji -= 2;	  if(ji-jl <= 0) {	    ji = 2*jr - 1;	    jl = jr;	  }	}    }}/* an inplace reordering subroutine */void FORD1(int m, real *b) {  int j, k = 4, kl = 2, n = 0x1 << m;  real t;    for(j = 4; j <= n; j += 2) {    if(k - j>0) {      t = b[j-1];      b[j - 1] = b[k - 1];      b[k - 1] = t;    }    k -= 2;    if(k - kl <= 0) {      k = 2*j;      kl = j;    }  }	}/*  the other inplace reordering subroutine */void FORD2(int m, real *b) {  real t;    int n = 0x1<<m, k, ij, ji, ij1, ji1;    int l[16], l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15;  int j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14;    l[1] = n;  for(k=2;k<=m;k++) l[k]=l[k-1]/2;  for(k=m;k<=14;k++) l[k+1]=2;    l15=l[1];l14=l[2];l13=l[3];l12=l[4];l11=l[5];l10=l[6];l9=l[7];  l8=l[8];l7=l[9];l6=l[10];l5=l[11];l4=l[12];l3=l[13];l2=l[14];l1=l[15];  ij = 2;    for(j1=2;j1<=l1;j1+=2)  for(j2=j1;j2<=l2;j2+=l1)  for(j3=j2;j3<=l3;j3+=l2)  for(j4=j3;j4<=l4;j4+=l3)  for(j5=j4;j5<=l5;j5+=l4)  for(j6=j5;j6<=l6;j6+=l5)  for(j7=j6;j7<=l7;j7+=l6)  for(j8=j7;j8<=l8;j8+=l7)  for(j9=j8;j9<=l9;j9+=l8)  for(j10=j9;j10<=l10;j10+=l9)  for(j11=j10;j11<=l11;j11+=l10)  for(j12=j11;j12<=l12;j12+=l11)  for(j13=j12;j13<=l13;j13+=l12)  for(j14=j13;j14<=l14;j14+=l13)  for(ji=j14;ji<=l15;ji+=l14) {    ij1 = ij-1; ji1 = ji - 1;    if(ij-ji<0) {      t = b[ij1-1];      b[ij1-1]=b[ji1-1];      b[ji1-1] = t;	      t = b[ij1];      b[ij1]=b[ji1];      b[ji1] = t;    }    ij += 2;  }} int fastlog2(int n) {  int num_bits, power = 0;  if((n < 2) || (n % 2 != 0)) return(0);  num_bits = sizeof(int) * 8;   /* How big are ints on this machine? */  while(power <= num_bits) {    n >>= 1;    power += 1;    if(n & 0x01) {      if(n > 1)	return(0);      else return(power);    }  }  return(0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -