📄 exec.c
字号:
/*===========================================================================*
* new_mem *
*===========================================================================*/
PRIVATE int new_mem(sh_mp, text_bytes, data_bytes,bss_bytes,stk_bytes,tot_bytes)
struct mproc *sh_mp; /* text can be shared with this process */
vir_bytes text_bytes; /* text segment size in bytes */
vir_bytes data_bytes; /* size of initialized data in bytes */
vir_bytes bss_bytes; /* size of bss in bytes */
vir_bytes stk_bytes; /* size of initial stack segment in bytes */
phys_bytes tot_bytes; /* total memory to allocate, including gap */
{
/* Allocate new memory and release the old memory. Change the map and report
* the new map to the kernel. Zero the new core image's bss, gap and stack.
*/
register struct mproc *rmp;
vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks, tot_clicks;
phys_clicks new_base;
#if (SHADOWING == 1)
phys_clicks base, size;
#else
static char zero[1024]; /* used to zero bss */
phys_bytes bytes, base, count, bss_offset;
#endif
/* No need to allocate text if it can be shared. */
if (sh_mp != NULL) text_bytes = 0;
/* Acquire the new memory. Each of the 4 parts: text, (data+bss), gap,
* and stack occupies an integral number of clicks, starting at click
* boundary. The data and bss parts are run together with no space.
*/
text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
gap_clicks = tot_clicks - data_clicks - stack_clicks;
if ( (int) gap_clicks < 0) return(ENOMEM);
/* Check to see if there is a hole big enough. If so, we can risk first
* releasing the old core image before allocating the new one, since we
* know it will succeed. If there is not enough, return failure.
*/
if (text_clicks + tot_clicks > max_hole()) return(EAGAIN);
/* There is enough memory for the new core image. Release the old one. */
rmp = mp;
#if (SHADOWING == 0)
if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) {
/* No other process shares the text segment, so free it. */
free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len);
}
/* Free the data and stack segments. */
free_mem(rmp->mp_seg[D].mem_phys,
rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir);
#endif
/* We have now passed the point of no return. The old core image has been
* forever lost. The call must go through now. Set up and report new map.
*/
new_base = alloc_mem(text_clicks + tot_clicks); /* new core image */
if (new_base == NO_MEM) panic("MM hole list is inconsistent", NO_NUM);
if (sh_mp != NULL) {
/* Share the text segment. */
rmp->mp_seg[T] = sh_mp->mp_seg[T];
} else {
rmp->mp_seg[T].mem_phys = new_base;
rmp->mp_seg[T].mem_vir = 0;
rmp->mp_seg[T].mem_len = text_clicks;
}
rmp->mp_seg[D].mem_phys = new_base + text_clicks;
rmp->mp_seg[D].mem_vir = 0;
rmp->mp_seg[D].mem_len = data_clicks;
rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys + data_clicks + gap_clicks;
rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + data_clicks + gap_clicks;
rmp->mp_seg[S].mem_len = stack_clicks;
#if (CHIP == M68000)
#if (SHADOWING == 0)
rmp->mp_seg[T].mem_vir = 0;
rmp->mp_seg[D].mem_vir = rmp->mp_seg[T].mem_len;
rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + rmp->mp_seg[D].mem_len + gap_clicks;
#else
rmp->mp_seg[T].mem_vir = rmp->mp_seg[T].mem_phys;
rmp->mp_seg[D].mem_vir = rmp->mp_seg[D].mem_phys;
rmp->mp_seg[S].mem_vir = rmp->mp_seg[S].mem_phys;
#endif
#endif
#if (SHADOWING == 0)
sys_newmap(who, rmp->mp_seg); /* report new map to the kernel */
/* Zero the bss, gap, and stack segment. */
bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;
base = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;
base += bss_offset;
bytes -= bss_offset;
while (bytes > 0) {
count = MIN(bytes, (phys_bytes) sizeof(zero));
if (sys_copy(MM_PROC_NR, D, (phys_bytes) zero,
ABS, 0, base, count) != OK) {
panic("new_mem can't zero", NO_NUM);
}
base += count;
bytes -= count;
}
#endif
#if (SHADOWING == 1)
sys_fresh(who, rmp->mp_seg, (phys_clicks)(data_bytes >> CLICK_SHIFT),
&base, &size);
free_mem(base, size);
#endif
return(OK);
}
/*===========================================================================*
* patch_ptr *
*===========================================================================*/
PRIVATE void patch_ptr(stack, base)
char stack[ARG_MAX]; /* pointer to stack image within MM */
vir_bytes base; /* virtual address of stack base inside user */
{
/* When doing an exec(name, argv, envp) call, the user builds up a stack
* image with arg and env pointers relative to the start of the stack. Now
* these pointers must be relocated, since the stack is not positioned at
* address 0 in the user's address space.
*/
char **ap, flag;
vir_bytes v;
flag = 0; /* counts number of 0-pointers seen */
ap = (char **) stack; /* points initially to 'nargs' */
ap++; /* now points to argv[0] */
while (flag < 2) {
if (ap >= (char **) &stack[ARG_MAX]) return; /* too bad */
if (*ap != NIL_PTR) {
v = (vir_bytes) *ap; /* v is relative pointer */
v += base; /* relocate it */
*ap = (char *) v; /* put it back */
} else {
flag++;
}
ap++;
}
}
/*===========================================================================*
* load_seg *
*===========================================================================*/
PRIVATE void load_seg(fd, seg, seg_bytes)
int fd; /* file descriptor to read from */
int seg; /* T or D */
vir_bytes seg_bytes; /* how big is the segment */
{
/* Read in text or data from the exec file and copy to the new core image.
* This procedure is a little bit tricky. The logical way to load a segment
* would be to read it block by block and copy each block to the user space
* one at a time. This is too slow, so we do something dirty here, namely
* send the user space and virtual address to the file system in the upper
* 10 bits of the file descriptor, and pass it the user virtual address
* instead of a MM address. The file system extracts these parameters when
* gets a read call from the memory manager, which is the only process that
* is permitted to use this trick. The file system then copies the whole
* segment directly to user space, bypassing MM completely.
*/
int new_fd, bytes;
char *ubuf_ptr;
new_fd = (who << 8) | (seg << 6) | fd;
ubuf_ptr = (char *) ((vir_bytes)mp->mp_seg[seg].mem_vir << CLICK_SHIFT);
while (seg_bytes != 0) {
bytes = (INT_MAX / BLOCK_SIZE) * BLOCK_SIZE;
if (seg_bytes < bytes)
bytes = (int)seg_bytes;
if (read(new_fd, ubuf_ptr, bytes) != bytes)
break; /* error */
ubuf_ptr += bytes;
seg_bytes -= bytes;
}
}
/*===========================================================================*
* find_share *
*===========================================================================*/
PUBLIC struct mproc *find_share(mp_ign, ino, dev, ctime)
struct mproc *mp_ign; /* process that should not be looked at */
ino_t ino; /* parameters that uniquely identify a file */
dev_t dev;
time_t ctime;
{
/* Look for a process that is the file <ino, dev, ctime> in execution. Don't
* accidentally "find" mp_ign, because it is the process on whose behalf this
* call is made.
*/
struct mproc *sh_mp;
for (sh_mp = &mproc[INIT_PROC_NR]; sh_mp < &mproc[NR_PROCS]; sh_mp++) {
if ((sh_mp->mp_flags & (IN_USE | HANGING | SEPARATE))
!= (IN_USE | SEPARATE)) continue;
if (sh_mp == mp_ign) continue;
if (sh_mp->mp_ino != ino) continue;
if (sh_mp->mp_dev != dev) continue;
if (sh_mp->mp_ctime != ctime) continue;
return sh_mp;
}
return(NULL);
}
#if (SHADOWING == 1)
/*===========================================================================*
* relocate *
*===========================================================================*/
PRIVATE int relocate(fd, buf)
int fd; /* file descriptor to read from */
unsigned char *buf; /* borrowed from do_exec() */
{
register int n;
register unsigned char *p, c;
register phys_bytes off;
register phys_bytes adr;
/* Read in relocation info from the exec file and relocate.
* Relocation info is in GEMDOS format. Only longs can be relocated.
*
* The GEMDOS format starts with a long L: the offset to the
* beginning of text for the first long to be relocated.
* If L==0 then no relocations have to be made.
*
* The long is followed by zero or more bytes. Each byte B is
* processed separately, in one of the following ways:
*
* B==0:
* end of relocation
* B==1:
* no relocation, but add 254 to the current offset
* B==0bWWWWWWW0:
* B is added to the current offset and the long addressed
* is relocated. Note that 00000010 means 1 word distance.
* B==0bXXXXXXX1:
* illegal
*/
off = (phys_bytes)mp->mp_seg[T].mem_phys << CLICK_SHIFT;
p = buf;
n = read(fd, (char *)p, ARG_MAX);
if (n < sizeof(long)) return(-1); /* error */
if (*((long *)p) == 0) return(0); /* ok */
adr = off + *((long *)p);
n -= sizeof(long);
p += sizeof(long);
*((long *)adr) += off;
while (1) { /* once per relocation byte */
if (--n < 0) {
p = buf;
n = read(fd, (char *)p, ARG_MAX);
if (--n < 0)
return(-1); /* error */
}
c = *p++;
if (c == 1)
adr += 254;
else if (c == 0)
return(0); /* ok */
else if (c & 1)
return(-1); /* error */
else {
adr += c;
*((long *)adr) += off;
}
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -