⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 signal.c

📁 MINIX2.0操作系统源码 MINIX2.0操作系统源码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* This file handles signals, which are asynchronous events and are generally
 * a messy and unpleasant business.  Signals can be generated by the KILL
 * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM).
 * In all cases control eventually passes to check_sig() to see which processes
 * can be signaled.  The actual signaling is done by sig_proc().
 *
 * The entry points into this file are:
 *   do_sigaction:   perform the SIGACTION system call
 *   do_sigpending:  perform the SIGPENDING system call
 *   do_sigprocmask: perform the SIGPROCMASK system call
 *   do_sigreturn:   perform the SIGRETURN system call
 *   do_sigsuspend:  perform the SIGSUSPEND system call
 *   do_kill:	perform the KILL system call
 *   do_ksig:	accept a signal originating in the kernel (e.g., SIGINT)
 *   do_alarm:	perform the ALARM system call by calling set_alarm()
 *   set_alarm:	tell the clock task to start or stop a timer
 *   do_pause:	perform the PAUSE system call
 *   do_reboot: kill all processes, then reboot system
 *   sig_proc:	interrupt or terminate a signaled process
 *   check_sig: check which processes to signal with sig_proc()
 */

#include "mm.h"
#include <sys/stat.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <signal.h>
#include <sys/sigcontext.h>
#include <string.h>
#include "mproc.h"
#include "param.h"

#define CORE_MODE	0777	/* mode to use on core image files */
#define DUMPED          0200	/* bit set in status when core dumped */
#define DUMP_SIZE	((INT_MAX / BLOCK_SIZE) * BLOCK_SIZE)
				/* buffer size for core dumps */

FORWARD _PROTOTYPE( void check_pending, (void)				);
FORWARD _PROTOTYPE( void dump_core, (struct mproc *rmp)			);
FORWARD _PROTOTYPE( void unpause, (int pro)				);


/*===========================================================================*
 *			       do_sigaction				     *
 *===========================================================================*/
PUBLIC int do_sigaction()
{
  int r;
  struct sigaction svec;
  struct sigaction *svp;

  if (sig_nr == SIGKILL) return(OK);
  if (sig_nr < 1 || sig_nr > _NSIG) return (EINVAL);
  svp = &mp->mp_sigact[sig_nr];
  if ((struct sigaction *) sig_osa != (struct sigaction *) NULL) {
	r = sys_copy(MM_PROC_NR,D, (phys_bytes) svp,
		who, D, (phys_bytes) sig_osa, (phys_bytes) sizeof(svec));
	if (r != OK) return(r);
  }

  if ((struct sigaction *) sig_nsa == (struct sigaction *) NULL) return(OK);

  /* Read in the sigaction structure. */
  r = sys_copy(who, D, (phys_bytes) sig_nsa,
		MM_PROC_NR, D, (phys_bytes) &svec, (phys_bytes) sizeof(svec));
  if (r != OK) return(r);

  if (svec.sa_handler == SIG_IGN) {
	sigaddset(&mp->mp_ignore, sig_nr);
	sigdelset(&mp->mp_sigpending, sig_nr);
	sigdelset(&mp->mp_catch, sig_nr);
  } else {
	sigdelset(&mp->mp_ignore, sig_nr);
	if (svec.sa_handler == SIG_DFL)
		sigdelset(&mp->mp_catch, sig_nr);
	else
		sigaddset(&mp->mp_catch, sig_nr);
  }
  mp->mp_sigact[sig_nr].sa_handler = svec.sa_handler;
  sigdelset(&svec.sa_mask, SIGKILL);
  mp->mp_sigact[sig_nr].sa_mask = svec.sa_mask;
  mp->mp_sigact[sig_nr].sa_flags = svec.sa_flags;
  mp->mp_sigreturn = (vir_bytes) sig_ret;
  return(OK);
}

/*===========================================================================*
 *                            do_sigpending                                  *
 *===========================================================================*/
PUBLIC int do_sigpending()
{
  ret_mask = (long) mp->mp_sigpending;
  return OK;
}

/*===========================================================================*
 *                            do_sigprocmask                                 *
 *===========================================================================*/
PUBLIC int do_sigprocmask()
{
/* Note that the library interface passes the actual mask in sigmask_set,
 * not a pointer to the mask, in order to save a sys_copy.  Similarly,
 * the old mask is placed in the return message which the library
 * interface copies (if requested) to the user specified address.
 *
 * The library interface must set SIG_INQUIRE if the 'act' argument
 * is NULL.
 */

  int i;

  ret_mask = (long) mp->mp_sigmask;

  switch (sig_how) {
      case SIG_BLOCK:
	sigdelset((sigset_t *)&sig_set, SIGKILL);
	for (i = 1; i < _NSIG; i++) {
		if (sigismember((sigset_t *)&sig_set, i))
			sigaddset(&mp->mp_sigmask, i);
	}
	break;

      case SIG_UNBLOCK:
	for (i = 1; i < _NSIG; i++) {
		if (sigismember((sigset_t *)&sig_set, i))
			sigdelset(&mp->mp_sigmask, i);
	}
	check_pending();
	break;

      case SIG_SETMASK:
	sigdelset((sigset_t *)&sig_set, SIGKILL);
	mp->mp_sigmask = (sigset_t)sig_set;
	check_pending();
	break;

      case SIG_INQUIRE:
	break;

      default:
	return(EINVAL);
	break;
  }
  return OK;
}

/*===========================================================================*
 *                            do_sigsuspend                                  *
 *===========================================================================*/
PUBLIC int do_sigsuspend()
{
  mp->mp_sigmask2 = mp->mp_sigmask;	/* save the old mask */
  mp->mp_sigmask = (sigset_t) sig_set;
  sigdelset(&mp->mp_sigmask, SIGKILL);
  mp->mp_flags |= SIGSUSPENDED;
  dont_reply = TRUE;
  check_pending();
  return OK;
}


/*===========================================================================*
 *                               do_sigreturn				     *
 *===========================================================================*/
PUBLIC int do_sigreturn()
{
/* A user signal handler is done.  Restore context and check for
 * pending unblocked signals.
 */

  int r;

  mp->mp_sigmask = (sigset_t) sig_set;
  sigdelset(&mp->mp_sigmask, SIGKILL);

  r = sys_sigreturn(who, (vir_bytes)sig_context, sig_flags);
  check_pending();
  return(r);
}

/*===========================================================================*
 *				do_kill					     *
 *===========================================================================*/
PUBLIC int do_kill()
{
/* Perform the kill(pid, signo) system call. */

  return check_sig(pid, sig_nr);
}


/*===========================================================================*
 *				do_ksig					     *
 *===========================================================================*/
PUBLIC int do_ksig()
{
/* Certain signals, such as segmentation violations and DEL, originate in the
 * kernel.  When the kernel detects such signals, it sets bits in a bit map.
 * As soon as MM is awaiting new work, the kernel sends MM a message containing
 * the process slot and bit map.  That message comes here.  The File System
 * also uses this mechanism to signal writing on broken pipes (SIGPIPE).
 */

  register struct mproc *rmp;
  int i, proc_nr;
  pid_t proc_id, id;
  sigset_t sig_map;

  /* Only kernel may make this call. */
  if (who != HARDWARE) return(EPERM);
  dont_reply = TRUE;		/* don't reply to the kernel */
  proc_nr = mm_in.SIG_PROC;
  rmp = &mproc[proc_nr];
  if ( (rmp->mp_flags & IN_USE) == 0 || (rmp->mp_flags & HANGING) ) return(OK);
  proc_id = rmp->mp_pid;
  sig_map = (sigset_t) mm_in.SIG_MAP;
  mp = &mproc[0];		/* pretend kernel signals are from MM */
  mp->mp_procgrp = rmp->mp_procgrp;	/* get process group right */

  /* Check each bit in turn to see if a signal is to be sent.  Unlike
   * kill(), the kernel may collect several unrelated signals for a
   * process and pass them to MM in one blow.  Thus loop on the bit
   * map. For SIGINT and SIGQUIT, use proc_id 0 to indicate a broadcast
   * to the recipient's process group.  For SIGKILL, use proc_id -1 to
   * indicate a systemwide broadcast.
   */
  for (i = 1; i <= _NSIG; i++) {
	if (!sigismember(&sig_map, i)) continue;
	switch (i) {
	    case SIGINT:
	    case SIGQUIT:
		id = 0; break;	/* broadcast to process group */
	    case SIGKILL:
		id = -1; break;	/* broadcast to all except INIT */
	    case SIGALRM:
		/* Disregard SIGALRM when the target process has not
		 * requested an alarm.  This only applies for a KERNEL
		 * generated signal.
		 */
		if ((rmp->mp_flags & ALARM_ON) == 0) continue;
		rmp->mp_flags &= ~ALARM_ON;
		/* fall through */
	    default:
		id = proc_id;
		break;
	}
	check_sig(id, i);
	sys_endsig(proc_nr);	/* tell kernel it's done */
  }
  return(OK);
}


/*===========================================================================*
 *				do_alarm				     *
 *===========================================================================*/
PUBLIC int do_alarm()
{
/* Perform the alarm(seconds) system call. */

  return(set_alarm(who, seconds));
}


/*===========================================================================*
 *				set_alarm				     *
 *===========================================================================*/
PUBLIC int set_alarm(proc_nr, sec)
int proc_nr;			/* process that wants the alarm */
int sec;			/* how many seconds delay before the signal */
{
/* This routine is used by do_alarm() to set the alarm timer.  It is also used
 * to turn the timer off when a process exits with the timer still on.
 */

  message m_sig;
  int remaining;

  if (sec != 0)
	mproc[proc_nr].mp_flags |= ALARM_ON;
  else
	mproc[proc_nr].mp_flags &= ~ALARM_ON;

  /* Tell the clock task to provide a signal message when the time comes.
   *
   * Large delays cause a lot of problems.  First, the alarm system call
   * takes an unsigned seconds count and the library has cast it to an int.
   * That probably works, but on return the library will convert "negative"
   * unsigneds to errors.  Presumably no one checks for these errors, so
   * force this call through.  Second, If unsigned and long have the same
   * size, converting from seconds to ticks can easily overflow.  Finally,
   * the kernel has similar overflow bugs adding ticks.
   *
   * Fixing this requires a lot of ugly casts to fit the wrong interface
   * types and to avoid overflow traps.  DELTA_TICKS has the right type
   * (clock_t) although it is declared as long.  How can variables like
   * this be declared properly without combinatorial explosion of message
   * types?
   */
  m_sig.m_type = SET_ALARM;
  m_sig.CLOCK_PROC_NR = proc_nr;
  m_sig.DELTA_TICKS = (clock_t) (HZ * (unsigned long) (unsigned) sec);
  if ( (unsigned long) m_sig.DELTA_TICKS / HZ != (unsigned) sec)
	m_sig.DELTA_TICKS = LONG_MAX;	/* eternity (really CLOCK_T_MAX) */
  if (sendrec(CLOCK, &m_sig) != OK) panic("alarm er", NO_NUM);
  remaining = (int) m_sig.SECONDS_LEFT;
  if (remaining != m_sig.SECONDS_LEFT || remaining < 0)
	remaining = INT_MAX;	/* true value is not representable */
  return(remaining);
}


/*===========================================================================*
 *				do_pause				     *
 *===========================================================================*/
PUBLIC int do_pause()
{
/* Perform the pause() system call. */

  mp->mp_flags |= PAUSED;
  dont_reply = TRUE;
  return(OK);
}


/*=====================================================================*
 *			    do_reboot				       *
 *=====================================================================*/
PUBLIC int do_reboot()
{
  register struct mproc *rmp = mp;
  char monitor_code[64];

  if (rmp->mp_effuid != SUPER_USER)   return EPERM;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -