⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geodistance.m

📁 用来计算地球表面两点之间的距离
💻 M
字号:
function r = geodistance( ci , cf , m ) 

% Calculates the distance in meters between two points on earth surface.
%
% SYNTAX: r = geodistance( coordinates1 , coordinates2 , method ) ; 
%         
%	  Where coordinates1 = [longitude1,latitude1] defines the
%	  initial position and coordinates2 = [longitude2,latitude2]
%	  defines the final position.
%	  Coordinates values should be specified in decimal degrees.
%	  Method can be an integer between 1 and 23, default is m = 6. 
%         Methods 1 and 2 are based on spherical trigonometry and a 
%         spheroidal model for the earth, respectively.  
%	  Methods 3 to 23 use Vincenty's formulae, based on ellipsoid 
%         parameters. 
%         Here it follows the correspondence between m and the type of 
%         ellipsoid:
%
%         m =  3 -> ANS ,        m =  4 -> GRS80,    m = 5 -> WGS72, 
%         m =  6 -> WGS84,       m =  7 -> NSWC-9Z2, 
%         m =  8 -> Clarke 1866, m =  9 -> Clarke 1880,
%         m = 10 -> Airy 1830,  
%         m = 11 -> Bessel 1841 (Ethiopia,Indonesia,Japan,Korea),
%         m = 12 -> Bessel 1841 (Namibia),
%         m = 13 -> Sabah and Sarawak (Everest,Brunei,E.Malaysia),
%         m = 14 -> India 1830, m = 15 -> India 1956, 
%         m = 16 -> W. Malaysia and Singapore 1948, 
%         m = 17 -> W. Malaysia 1969, 
%         m = 18 -> Helmert 1906,m = 19 -> Helmert 1960,
%         m = 20 -> Hayford International 1924, 
%         m = 21 -> Hough 1960, m = 22 -> Krassovsky 1940,
%         m = 23 -> Modified Fischer 1960, 
%         m = 24 -> South American 1969. 
%
%	  Important notes:
%
%	 1)South latitudes are negative.
%	 2)East longitudes are positive.
%	 3)Great circle distance is the shortest distance between two points 
%          on a sphere. This coincides with the circumference of a circle which 
%          passes through both points and the centre of the sphere.
%	 4)Geodesic distance is the shortest distance between two points on a spheroid.
%	 5)Normal section distance is formed by a plane on a spheroid containing a 
%          point at one end of the line and the normal of the point at the other end. 
%          For all practical purposes, the difference between a normal section and a 
%          geodesic distance is insignificant.
%	 6)The method m=2 assumes a spheroidal model for the earth with an average 
%          radius of 6364.963 km. It has been derived for use within Australia. 
%          The formula is estimated to have an accuracy of about 200 metres over 50 km, 
%          but may deteriorate with longer distances. 
%          However, it is not symmetric when the points are exchanged. 
%  
%  Examples: A = [150 -30]; B = [150 -31]; L = [151 -80];
%            [geodistance(A,B,1) geodistance(A,B,2) geodistance(A,B,3)]
%            [geodistance(A,L,1) geodistance(A,L,2) geodistance(A,L,3)]
%            geodistance([0 0],[2 3])
%            geodistance([2 3],[0 0])
%            geodistance([0 0],[2 3],1)
%            geodistance([2 3],[0 0],1)
%            geodistance([0 0],[2 3],2)
%            geodistance([2 3],[0 0],2)
%            for m = 1:24
%            r(m) = geodistance([150 -30],[151 -80],m);
%            end
%            plot([1:m],r), box on, grid on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Second version: 07/11/2007
% 
% Contact: orodrig@ualg.pt
% 
% Any suggestions to improve the performance of this 
% code will be greatly appreciated. 
% 
% Reference: Geodetic Calculations Methods
%            Geoscience Australia
%            (http://www.ga.gov.au/geodesy/calcs/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

r = [ ] ; 

if nargin == 2, m = 6; end 

longitude1 = pi*ci(1)/180 ; 
 latitude1 = pi*ci(2)/180 ; 
 
longitude2 = pi*cf(1)/180 ; 
 latitude2 = pi*cf(2)/180 ; 

alla = [0 0 6378160 6378137.0 6378135 6378137.0 6378145 6378206.4 6378249.145,...
          6377563.396 6377397.155 6377483.865,... 
          6377298.556 6377276.345 6377301.243 6377304.063 6377295.664 6378200 6378270 6378388  6378270 6378245,... 
	  6378155 6378160];

allf = [0 0  1/298.25 1/298.257222101 1/298.26 1/298.257223563 1/298.25 1/294.9786982 1/293.465,...
             1/299.3249646 1/299.1528128,...
             1/299.1528128 1/300.8017 1/300.8017 1/300.8017 1/300.8017 1/300.8017 1/298.3 1/297 1/297 1/297,...  
	     1/298.3 1/298.3 1/298.25];

if ( longitude1 == longitude2)&( latitude1 == latitude2 ) 

r = 0; 

else 

if m == 1 % Great Circle Distance, based on spherical trigonometry

       r = 180*1.852*60*acos( ...
       sin(latitude1)*sin(latitude2) + cos(latitude1)*cos(latitude2)*cos(longitude2-longitude1) )/pi ;
       r = 1000*abs( r );  

elseif m == 2 % Spheroidal model for the earth 

       term1 = 111.08956*( ci(2) - cf(2) + 0.000001 ) ;  
       term2 = cos( latitude1  + ( (latitude2 - latitude1)/2 ) ) ;
       term3 = ( cf(1) - ci(1) + 0.000001 )/( cf(2) - ci(2) + 0.000001 ) ;  
       r = 1000*abs( term1/cos( atan( term2*term3 ) ) ); 

else % Apply Vincenty's formulae (as long as the points are not coincident):

a = alla(m); 
f = allf(m); 

b = a*( 1 - f ) ;											 	

tangens_u1 = ( 1 - f )*tan( latitude1 ) ; u1 = atan( tangens_u1 ) ;					 	
tangens_u2 = ( 1 - f )*tan( latitude2 ) ; u2 = atan( tangens_u2 ) ;					 	
delta_longitude = longitude2 - longitude1 ;								 	
lambda = delta_longitude ;										 	
squared_sin_of_sigma = ( cos(u2)*sin(lambda) )^2 + ( cos(u1)*sin(u2) - sin(u1)*cos(u2)*cos(lambda) )^2 ; 	
	sin_of_sigma = sqrt( squared_sin_of_sigma ) ; % This is zero when the points are coincident... 							 	
	cos_of_sigma = sin( u1 )*sin( u2 ) + cos( u1 )*cos( u2 )*cos( lambda ) ;			 	
	tan_of_sigma = sin_of_sigma/cos_of_sigma ;							 	
	       sigma = atan( tan_of_sigma ) ;								 	
    tangens_of_sigma = sin_of_sigma/cos_of_sigma ;						 	
	sin_of_alpha = cos( u1 )*cos( u2 )*sin( lambda )/sin_of_sigma ; 				 	
	cos_of_alpha = sqrt( 1 - sin_of_alpha^2 ) ;							 	
	cos_of_2sigmam = cos_of_sigma - ( 2*sin( u1 )*sin( u2 )/cos_of_alpha^2 ) ;			 	
													  
C = (f/16)*( cos_of_alpha )^2*( 4 + f*( 4 - 3*( cos_of_alpha )^2 ) ) ;					 	

lambda2 = delta_longitude + ( 1 - C )*f*sin_of_alpha*( sigma + C*sin_of_sigma*( ...			 	
	   cos_of_2sigmam + C*cos_of_sigma*( -1 + 2*( cos_of_2sigmam )^2 ) ) ) ;			 	

while ( abs( lambda - lambda2 ) > 1e-9 )								 	
 													 	
 lambda = lambda2 ;											 	
 squared_sin_of_sigma = ( cos(u2)*sin(lambda) )^2 + ( cos(u1)*sin(u2) - sin(u1)*cos(u2)*cos(lambda) )^2 ;	
	 sin_of_sigma = sqrt( squared_sin_of_sigma ) ;							 	
	 cos_of_sigma = sin( u1 )*sin( u2 ) + cos( u1 )*cos( u2 )*cos( lambda ) ;			 	
	 tan_of_sigma = sin_of_sigma/cos_of_sigma ;							 	
		sigma = atan( tan_of_sigma ) ;								 	
     tangens_of_sigma = sin_of_sigma/cos_of_sigma ;							 	
	 sin_of_alpha = cos( u1 )*cos( u2 )*sin( lambda )/sin_of_sigma ;				 	
	 cos_of_alpha = sqrt( 1 - sin_of_alpha^2 ) ;							 	
	 cos_of_2sigmam = cos_of_sigma - ( 2*sin( u1 )*sin( u2 )/cos_of_alpha^2 ) ;			 	
													  
 C = (f/16)*( cos_of_alpha )^2*( 4 + f*( 4 - 3*( cos_of_alpha )^2 ) ) ; 				 	
													  
 lambda2 = delta_longitude + ( 1 - C )*f*sin_of_alpha*( sigma + C*sin_of_sigma*( ...			 	
	   cos_of_2sigmam + C*cos_of_sigma*( -1 + 2*( cos_of_2sigmam )^2 ) ) ) ;			 	

end % while ( abs(lambda - lambda2 ) > 1e-9 )								 	

u2 = ( cos_of_alpha^2 )*( a^2 - b^2 )/b^2 ;								 	
A = 1 + ( u2/16384 )*( 4096 + u2*( -768 + u2*( 320 - 175*u2 ) ) ) ;					 	
B = ( u2/1024 )*( 256 + u2*( -128 + u2*( 74 - 47*u2 ) ) ) ;						 	
delta_sigma = B*sin_of_sigma*( cos_of_2sigmam + ( B/4 )*( ...						 	
		cos_of_sigma*( -1 + 2*cos_of_2sigmam^2 ) - ...						 	
	  (B/6)*cos_of_2sigmam*( -3 + 4*sin_of_sigma^2 )*( -3 + 4*cos_of_2sigmam^2 ) ) ) ;		 	
r = b*A*( sigma - delta_sigma ) ; 									 	

end 

end 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -