📄 onedim.m
字号:
% 一维particle滤波
% Process function:
% x(k) = x(k-1)./2 + 25*x(k-1)./(1 + x(k-1).^2) + 8*cos(1.2*k) + w(k);
%
% Measurement function:
% y(k) = (x(k)^2)/20 + v(k)
%
% Date: 3/31/2006
clear; %清除workspace
clc; %清除Command Window
close all; %
N = 1000; % Number of particles
P0 = 2; % Initial process noise covariance
Q = 10; % Process noise covariance
R = 1; % Measurement noise covariance
T=50; % Step of time
x0=0.1; % 系统初始值
x(1) = x0; % Initial state value
y(1) =(x(1)^2)/20+sqrt(R)*randn(1);
for k = 2:T % Simulate the system
x(k) =x(k-1)/2 + 25*x(k-1)/(1 + x(k-1)^2) + 8*cos(1.2*(k-1))+ sqrt(Q)*randn(1);% 计算真实值x
y(k) = (x(k)^2)/20+ sqrt(R)*randn(1); % 计算真实值y
end
xTrue = x; % 真实值
x = sqrt(P0)*randn(1,N); % Initialize the particles
xpf(1) = mean(x);
tic;
for k = 2:T
x = x./2 + 25*x./(1 + x.^2) + 8*cos(1.2*(k-1))+sqrt(Q)*randn(1,N);
h=(x.^2)/20;
e = repmat(y(k),1,N) - h; % Calculate weights
q0 =(1/sqrt(2*pi*R))*exp(-e.^2/(2*R)); % The likelihood function
q = q0/sum(q0); % Normalize the importance weights
% 重采样
P = cumsum(q); % 计算q的累加值,维数和q一样
ut(1)=rand(1)/N;
kk = 1;
i = zeros(1,N);
for j = 1:N
ut(j)=ut(1)+(j-1)/N;
while(P(kk)<ut(j));
kk = kk + 1;
end;
i(j) = kk;
q(j)=1/N;
end;
x = x(:,i); % The new particles
xpf(k) = mean(x); % Compute the estimate
end
time = toc
figure(1)
clf;
% plot(1:T,xTrue,'b*-',1:T,xpf,'r^-'); % 真实值蓝色*表示,滤波值红色三角表示
plot(1:T,xTrue,'b*-');
hold on
plot(1:T,xpf,'r^-');
legend('原始值','particle滤波值');
xlabel('Time');
axis([0 50 -40 40]);
figure(2)
clf;
plot(xpf,xTrue,'+');
hold on;
c=-25:1:25;
plot(c,c,'r');
axis([-25 25 -25 25]);
% op=std(xpf-xTrue)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -