⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kernelestimator.java

📁 数据挖掘estimators算法
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    KernelEstimator.java *    Copyright (C) 1999 Len Trigg * */package weka.estimators;import java.util.*;import weka.core.*;/**  * Simple kernel density estimator. Uses one gaussian kernel per observed * data value. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.4 $ */public class KernelEstimator implements Estimator {  /** Vector containing all of the values seen */  private double [] m_Values;  /** Vector containing the associated weights */  private double [] m_Weights;  /** Number of values stored in m_Weights and m_Values so far */  private int m_NumValues;  /** The sum of the weights so far */  private double m_SumOfWeights;  /** The standard deviation */  private double m_StandardDev;  /** The precision of data values */  private double m_Precision;  /** Whether we can optimise the kernel summation */  private boolean m_AllWeightsOne;  /** Maximum percentage error permitted in probability calculations */  private static double MAX_ERROR = 0.01;  /**   * Execute a binary search to locate the nearest data value   *   * @param the data value to locate   * @return the index of the nearest data value   */  private int findNearestValue(double key) {    int low = 0;     int high = m_NumValues;    int middle = 0;    while (low < high) {      middle = (low + high) / 2;      double current = m_Values[middle];      if (current == key) {	return middle;      }      if (current > key) {	high = middle;      } else if (current < key) {	low = middle + 1;      }    }    return low;  }  /**   * Round a data value using the defined precision for this estimator   *   * @param data the value to round   * @return the rounded data value   */  private double round(double data) {    return Math.rint(data / m_Precision) * m_Precision;  }    // ===============  // Public methods.  // ===============    /**   * Constructor that takes a precision argument.   *   * @param precision the  precision to which numeric values are given. For   * example, if the precision is stated to be 0.1, the values in the   * interval (0.25,0.35] are all treated as 0.3.    */  public KernelEstimator(double precision) {    m_Values = new double [50];    m_Weights = new double [50];    m_NumValues = 0;    m_SumOfWeights = 0;    m_AllWeightsOne = true;    m_Precision = precision;    //    m_StandardDev = 1e10 * m_Precision; // Set the standard deviation initially very wide    m_StandardDev = m_Precision / (2 * 3);  }  /**   * Add a new data value to the current estimator.   *   * @param data the new data value    * @param weight the weight assigned to the data value    */  public void addValue(double data, double weight) {    if (weight == 0) {      return;    }    data = round(data);    int insertIndex = findNearestValue(data);    if ((m_NumValues <= insertIndex) || (m_Values[insertIndex] != data)) {      if (m_NumValues < m_Values.length) {	int left = m_NumValues - insertIndex; 	System.arraycopy(m_Values, insertIndex, 			 m_Values, insertIndex + 1, left);	System.arraycopy(m_Weights, insertIndex, 			 m_Weights, insertIndex + 1, left);	m_Values[insertIndex] = data;	m_Weights[insertIndex] = weight;	m_NumValues++;      } else {	double [] newValues = new double [m_Values.length * 2];	double [] newWeights = new double [m_Values.length * 2];	int left = m_NumValues - insertIndex; 	System.arraycopy(m_Values, 0, newValues, 0, insertIndex);	System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex);	newValues[insertIndex] = data;	newWeights[insertIndex] = weight;	System.arraycopy(m_Values, insertIndex, 			 newValues, insertIndex + 1, left);	System.arraycopy(m_Weights, insertIndex, 			 newWeights, insertIndex + 1, left);	m_NumValues++;	m_Values = newValues;	m_Weights = newWeights;      }      if (weight != 1) {	m_AllWeightsOne = false;      }    } else {      m_Weights[insertIndex] += weight;      m_AllWeightsOne = false;          }    m_SumOfWeights += weight;    double range = m_Values[m_NumValues - 1] - m_Values[0];    if (range > 0) {      m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights), 			       // allow at most 3 sds within one interval			       m_Precision / (2 * 3));    }  }  /**   * Get a probability estimate for a value.   *   * @param data the value to estimate the probability of   * @return the estimated probability of the supplied value   */  public double getProbability(double data) {    double delta = 0, sum = 0, currentProb = 0;    double zLower = 0, zUpper = 0;    if (m_NumValues == 0) {      zLower = (data - (m_Precision / 2)) / m_StandardDev;      zUpper = (data + (m_Precision / 2)) / m_StandardDev;      return (Statistics.normalProbability(zUpper)	      - Statistics.normalProbability(zLower));    }    double weightSum = 0;    int start = findNearestValue(data);    for (int i = start; i < m_NumValues; i++) {      delta = m_Values[i] - data;      zLower = (delta - (m_Precision / 2)) / m_StandardDev;      zUpper = (delta + (m_Precision / 2)) / m_StandardDev;      currentProb = (Statistics.normalProbability(zUpper)		     - Statistics.normalProbability(zLower));      sum += currentProb * m_Weights[i];      /*      System.out.print("zL" + (i + 1) + ": " + zLower + " ");      System.out.print("zU" + (i + 1) + ": " + zUpper + " ");      System.out.print("P" + (i + 1) + ": " + currentProb + " ");      System.out.println("total: " + (currentProb * m_Weights[i]) + " ");      */      weightSum += m_Weights[i];      if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) {	break;      }    }    for (int i = start - 1; i >= 0; i--) {      delta = m_Values[i] - data;      zLower = (delta - (m_Precision / 2)) / m_StandardDev;      zUpper = (delta + (m_Precision / 2)) / m_StandardDev;      currentProb = (Statistics.normalProbability(zUpper)		     - Statistics.normalProbability(zLower));      sum += currentProb * m_Weights[i];      weightSum += m_Weights[i];      if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) {	break;      }    }    return sum / m_SumOfWeights;  }  /** Display a representation of this estimator */  public String toString() {    String result = m_NumValues + " Normal Kernels. \nStandardDev = "       + Utils.doubleToString(m_StandardDev,6,4)      + " Precision = " + m_Precision;    if (m_NumValues == 0) {      result += "  \nMean = 0";    } else {      result += "  \nMeans =";      for (int i = 0; i < m_NumValues; i++) {	result += " " + m_Values[i];      }      if (!m_AllWeightsOne) {	result += "\nWeights = ";	for (int i = 0; i < m_NumValues; i++) {	  result += " " + m_Weights[i];	}      }    }    return result + "\n";  }  /**   * Main method for testing this class.   *   * @param argv should contain a sequence of numeric values   */  public static void main(String [] argv) {    try {      if (argv.length < 2) {	System.out.println("Please specify a set of instances.");	return;      }      KernelEstimator newEst = new KernelEstimator(0.01);      for (int i = 0; i < argv.length - 3; i += 2) {	newEst.addValue(Double.valueOf(argv[i]).doubleValue(), 			Double.valueOf(argv[i + 1]).doubleValue());      }      System.out.println(newEst);      double start = Double.valueOf(argv[argv.length - 2]).doubleValue();      double finish = Double.valueOf(argv[argv.length - 1]).doubleValue();      for (double current = start; current < finish; 	  current += (finish - start) / 50) {	System.out.println("Data: " + current + " " 			   + newEst.getProbability(current));      }    } catch (Exception e) {      System.out.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -