⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kkconditionalestimator.java

📁 数据挖掘estimators算法
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    KKConditionalEstimator.java *    Copyright (C) 1999 Len Trigg * */package weka.estimators;import java.util.*;import weka.core.*;/**  * Conditional probability estimator for a numeric domain conditional upon * a numeric domain. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.4 $ */public class KKConditionalEstimator implements ConditionalEstimator {  /** Vector containing all of the values seen */  private double [] m_Values;  /** Vector containing all of the conditioning values seen */  private double [] m_CondValues;  /** Vector containing the associated weights */  private double [] m_Weights;  /**   * Number of values stored in m_Weights, m_CondValues, and m_Values so far   */  private int m_NumValues;  /** The sum of the weights so far */  private double m_SumOfWeights;  /** Current standard dev */  private double m_StandardDev;  /** Whether we can optimise the kernel summation */  private boolean m_AllWeightsOne;  /** The numeric precision */  private double m_Precision;  /**   * Execute a binary search to locate the nearest data value   *   * @param key the data value to locate   * @param secondaryKey the data value to locate   * @return the index of the nearest data value   */  private int findNearestPair(double key, double secondaryKey) {    int low = 0;     int high = m_NumValues;    int middle = 0;    while (low < high) {      middle = (low + high) / 2;      double current = m_CondValues[middle];      if (current == key) {	double secondary = m_Values[middle];	if (secondary == secondaryKey) {	  return middle;	}	if (secondary > secondaryKey) {	  high = middle;	} else if (secondary < secondaryKey) {	  low = middle+1;	}      }      if (current > key) {	high = middle;      } else if (current < key) {	low = middle+1;      }    }    return low;  }  /**   * Round a data value using the defined precision for this estimator   *   * @param data the value to round   * @return the rounded data value   */  private double round(double data) {    return Math.rint(data / m_Precision) * m_Precision;  }    /**   * Constructor   *   * @param precision the  precision to which numeric values are given. For   * example, if the precision is stated to be 0.1, the values in the   * interval (0.25,0.35] are all treated as 0.3.    */  public KKConditionalEstimator(double precision) {    m_CondValues = new double [50];    m_Values = new double [50];    m_Weights = new double [50];    m_NumValues = 0;    m_SumOfWeights = 0;    m_StandardDev = 0;    m_AllWeightsOne = true;    m_Precision = precision;  }  /**   * Add a new data value to the current estimator.   *   * @param data the new data value    * @param given the new value that data is conditional upon    * @param weight the weight assigned to the data value    */  public void addValue(double data, double given, double weight) {    data = round(data);    given = round(given);    int insertIndex = findNearestPair(given, data);    if ((m_NumValues <= insertIndex)	|| (m_CondValues[insertIndex] != given)	|| (m_Values[insertIndex] != data)) {      if (m_NumValues < m_Values.length) {	int left = m_NumValues - insertIndex; 	System.arraycopy(m_Values, insertIndex, 			 m_Values, insertIndex + 1, left);	System.arraycopy(m_CondValues, insertIndex, 			 m_CondValues, insertIndex + 1, left);	System.arraycopy(m_Weights, insertIndex, 			 m_Weights, insertIndex + 1, left);	m_Values[insertIndex] = data;	m_CondValues[insertIndex] = given;	m_Weights[insertIndex] = weight;	m_NumValues++;      } else {	double [] newValues = new double [m_Values.length*2];	double [] newCondValues = new double [m_Values.length*2];	double [] newWeights = new double [m_Values.length*2];	int left = m_NumValues - insertIndex; 	System.arraycopy(m_Values, 0, newValues, 0, insertIndex);	System.arraycopy(m_CondValues, 0, newCondValues, 0, insertIndex);	System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex);	newValues[insertIndex] = data;	newCondValues[insertIndex] = given;	newWeights[insertIndex] = weight;	System.arraycopy(m_Values, insertIndex, 			 newValues, insertIndex+1, left);	System.arraycopy(m_CondValues, insertIndex, 			 newCondValues, insertIndex+1, left);	System.arraycopy(m_Weights, insertIndex, 			 newWeights, insertIndex+1, left);	m_NumValues++;	m_Values = newValues;	m_CondValues = newCondValues;	m_Weights = newWeights;      }      if (weight != 1) {	m_AllWeightsOne = false;      }    } else {      m_Weights[insertIndex] += weight;      m_AllWeightsOne = false;          }    m_SumOfWeights += weight;    double range = m_CondValues[m_NumValues-1] - m_CondValues[0];    m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights), 			     // allow at most 3 sds within one interval			     m_Precision / (2 * 3));  }  /**   * Get a probability estimator for a value   *   * @param data the value to estimate the probability of   * @param given the new value that data is conditional upon    * @return the estimator for the supplied value given the condition   */  public Estimator getEstimator(double given) {    Estimator result = new KernelEstimator(m_Precision);    if (m_NumValues == 0) {      return result;    }    double delta = 0, currentProb = 0;    double zLower, zUpper;    for(int i = 0; i < m_NumValues; i++) {      delta = m_CondValues[i] - given;      zLower = (delta - (m_Precision / 2)) / m_StandardDev;      zUpper = (delta + (m_Precision / 2)) / m_StandardDev;      currentProb = (Statistics.normalProbability(zUpper)		     - Statistics.normalProbability(zLower));      result.addValue(m_Values[i], currentProb * m_Weights[i]);    }    return result;  }  /**   * Get a probability estimate for a value   *   * @param data the value to estimate the probability of   * @param given the new value that data is conditional upon    * @return the estimated probability of the supplied value   */  public double getProbability(double data, double given) {    return getEstimator(given).getProbability(data);  }  /**   * Display a representation of this estimator   */  public String toString() {    String result = "KK Conditional Estimator. "       + m_NumValues + " Normal Kernels:\n"      + "StandardDev = " + Utils.doubleToString(m_StandardDev,4,2)       + "  \nMeans =";    for(int i = 0; i < m_NumValues; i++) {      result += " (" + m_Values[i] + ", " + m_CondValues[i] + ")";      if (!m_AllWeightsOne) {	  result += "w=" + m_Weights[i];      }    }    return result;  }  /**   * Main method for testing this class. Creates some random points   * in the range 0 - 100,    * and prints out a distribution conditional on some value   *   * @param argv should contain: seed conditional_value numpoints   */  public static void main(String [] argv) {    try {      int seed = 42;      if (argv.length > 0) {	seed = Integer.parseInt(argv[0]);      }      KKConditionalEstimator newEst = new KKConditionalEstimator(0.1);      // Create 100 random points and add them      Random r = new Random(seed);            int numPoints = 50;      if (argv.length > 2) {	numPoints = Integer.parseInt(argv[2]);      }      for(int i = 0; i < numPoints; i++) {	int x = Math.abs(r.nextInt()%100);	int y = Math.abs(r.nextInt()%100);	System.out.println("# " + x + "  " + y);	newEst.addValue(x, y, 1);      }      //    System.out.println(newEst);      int cond;      if (argv.length > 1) {	cond = Integer.parseInt(argv[1]);      } else {	cond = Math.abs(r.nextInt()%100);      }      System.out.println("## Conditional = " + cond);      Estimator result = newEst.getEstimator(cond);      for(int i = 0; i <= 100; i+= 5) {	System.out.println(" " + i + "  " + result.getProbability(i));      }    } catch (Exception e) {      System.out.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -