⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 amocell1.java

📁 这是多目标进化算法包
💻 JAVA
字号:
/** * aMOCell1.java * @author Juan J. Durillo * @version 1.0 */package jmetal.metaheuristics.mocell;import jmetal.base.*;import java.util.Comparator;import jmetal.base.archive.CrowdingArchive;import jmetal.base.operator.comparator.*;import jmetal.util.*;/** * This class representing the asychronous version of MOCell algorithm */public class aMOCell1 extends Algorithm{  /**   * Stores the problem to solve   */  private Problem problem_;       /**    * Constructor   * @param problem Problem to solve   */  public aMOCell1(Problem problem){    problem_ = problem;  } //aMOCell1         /**      * Runs of the aMOCell1 algorithm.   * @return a <code>SolutionSet</code> that is a set of non dominated solutions   * as a result of the algorithm execution     * @throws JMException    */     public SolutionSet execute() throws JMException {    int populationSize, archiveSize, maxEvaluations, evaluations, feedBack;    Operator mutationOperator, crossoverOperator, selectionOperator;    SolutionSet currentSolutionSet;    CrowdingArchive archive;    SolutionSet [] neighbors;        Neighborhood neighborhood;    Comparator dominance = new DominanceComparator(),    crowding  = new CrowdingComparator();                       Distance distance = new Distance();    //Read the params    populationSize    = ((Integer)getInputParameter("populationSize")).intValue();    archiveSize       = ((Integer)getInputParameter("archiveSize")).intValue();    maxEvaluations    = ((Integer)getInputParameter("maxEvaluations")).intValue();                    feedBack          = ((Integer)getInputParameter("feedBack")).intValue();    //Read the operators    mutationOperator  = operators_.get("mutation");    crossoverOperator = operators_.get("crossover");    selectionOperator = operators_.get("selection");            //Init the variables    //init the population and the archive    currentSolutionSet  = new SolutionSet(populationSize);            archive            = new CrowdingArchive(archiveSize,problem_.getNumberOfObjectives());                    evaluations        = 0;                            neighborhood       = new Neighborhood(populationSize);    neighbors          = new SolutionSet[populationSize];    //Create the initial population    for (int i = 0; i < populationSize; i++){      Solution solution = new Solution(problem_);      problem_.evaluate(solution);                 problem_.evaluateConstraints(solution);      currentSolutionSet.add(solution);      solution.setLocation(i);      evaluations++;    }    while (evaluations < maxEvaluations){                                       for (int ind = 0; ind < currentSolutionSet.size(); ind++){        Solution individual = new Solution(currentSolutionSet.get(ind));        Solution [] parents = new Solution[2];        Solution [] offSpring;        //neighbors[ind] = neighborhood.getFourNeighbors(currentSolutionSet,ind);        neighbors[ind] = neighborhood.getEightNeighbors(currentSolutionSet,ind);                                                                   neighbors[ind].add(individual);        //parents        parents[0] = (Solution)selectionOperator.execute(neighbors[ind]);        parents[1] = (Solution)selectionOperator.execute(neighbors[ind]);        //Create a new solution, using genetic operators mutation and crossover        offSpring = (Solution [])crossoverOperator.execute(parents);                       mutationOperator.execute(offSpring[0]);        //Evaluate solution and constraints        problem_.evaluate(offSpring[0]);        problem_.evaluateConstraints(offSpring[0]);        evaluations++;        // Check dominance        int flag = dominance.compare(individual,offSpring[0]);                       if (flag == 1) { // offSpring[0] dominates          offSpring[0].setLocation(individual.getLocation());                                                currentSolutionSet.replace(offSpring[0].getLocation(),offSpring[0]);          archive.add(new Solution(offSpring[0]));                           } else if (flag == 0) { //Both two are non-dominates                         neighbors[ind].add(offSpring[0]);          //(new Spea2Fitness(neighbors[ind])).fitnessAssign();                             //neighbors[ind].sort(new FitnessAndCrowdingDistanceComparator());          Ranking rank = new Ranking(neighbors[ind]);          for (int j = 0; j < rank.getNumberOfSubfronts(); j++) {            (distance).crowdingDistanceAssignment(rank.getSubfront(j),                problem_.getNumberOfObjectives());          }          boolean deleteMutant = true;                    int compareResult = crowding.compare(individual,offSpring[0]);          if (compareResult == 1) //The offSpring[0] is better            deleteMutant = false;          if (!deleteMutant){            offSpring[0].setLocation(individual.getLocation());            currentSolutionSet.replace(offSpring[0].getLocation(),offSpring[0]);            archive.add(new Solution(offSpring[0]));          } else {            archive.add(new Solution(offSpring[0]));              }        }                                    }                           //Stores a portion of the archive into the population      (distance).crowdingDistanceAssignment(archive,problem_.getNumberOfObjectives());                            for (int j = 0; j < feedBack; j++){        if (archive.size() > j){          int r = PseudoRandom.randInt(0,currentSolutionSet.size()-1);          if (r < currentSolutionSet.size()){            Solution individual = archive.get(j);            individual.setLocation(r);            currentSolutionSet.replace(r,new Solution(individual));          }        }      }                          }    return archive;  } // execute        } // aMOCell1

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -