📄 nonelitistes.java
字号:
/**
* NonElitist.java
* @author Antonio J. Nebro
* @version 1.0
*/
package jmetal.metaheuristics.singleObjective.evolutionStrategy;
import jmetal.base.*;
import jmetal.base.operator.comparator.* ;
import jmetal.base.Algorithm;
import java.util.Comparator;
import jmetal.util.*;
/**
* Class implementing a (mu,lambda) ES. Lambda must be divisible by mu.
*/
public class NonElitistES extends Algorithm {
private Problem problem_;
private int mu_ ;
private int lambda_ ;
/**
* Constructor
* Create a new NonElitistES instance.
* @param problem Problem to solve.
* @mu Mu
* @lambda Lambda
*/
public NonElitistES(Problem problem, int mu, int lambda){
problem_ = problem;
mu_ = mu ;
lambda_ = lambda ;
} // NonElitistES
/**
* Execute the NonElitistES algorithm
* @throws JMException
*/
public SolutionSet execute() throws JMException {
int maxEvaluations ;
int evaluations ;
Solution bestIndividual ;
SolutionSet population ;
SolutionSet offspringPopulation ;
Operator mutationOperator ;
Comparator comparator ;
comparator = new ObjectiveComparator(0) ; // Single objective comparator
// Read the params
maxEvaluations = ((Integer)this.getInputParameter("maxEvaluations")).intValue();
// Initialize the variables
population = new SolutionSet(mu_ + 1) ;
offspringPopulation = new SolutionSet(lambda_) ;
evaluations = 0;
// Read the operators
mutationOperator = this.operators_.get("mutation");
System.out.println("(" + mu_ + " , " + lambda_+")ES") ;
// Create the parent population of mu solutions
Solution newIndividual;
newIndividual = new Solution(problem_) ;
problem_.evaluate(newIndividual);
evaluations ++ ;
population.add(newIndividual);
bestIndividual = new Solution(newIndividual) ;
for (int i = 1; i < mu_; i++) {
System.out.println(i) ;
newIndividual = new Solution(problem_);
problem_.evaluate(newIndividual);
evaluations++;
population.add(newIndividual);
if (comparator.compare(bestIndividual, newIndividual) > 0 )
bestIndividual = new Solution(newIndividual) ;
} //for
// Main loop
int offsprings ;
offsprings = lambda_ / mu_ ;
while (evaluations < maxEvaluations) {
// STEP 1. Generate the lambda population
for (int i = 0; i < mu_; i++) {
for (int j = 0; j < offsprings; j++) {
Solution offspring = new Solution(population.get(i)) ;
mutationOperator.execute(offspring);
problem_.evaluate(offspring) ;
offspringPopulation.add(offspring) ;
evaluations ++ ;
} // for
} // for
// STEP 2. Sort the lambda population
offspringPopulation.sort(comparator) ;
// STEP 3. Update the best individual
if (comparator.compare(bestIndividual, offspringPopulation.get(0)) > 0 )
bestIndividual = new Solution(offspringPopulation.get(0)) ;
// STEP 4. Create the new mu population
population.clear() ;
for (int i = 0; i < mu_; i++)
population.add(offspringPopulation.get(i)) ;
System.out.println("Evaluation: " + evaluations +
" Current best fitness: " + population.get(0).getObjective(0) +
" Global best fitness: " + bestIndividual.getObjective(0)) ;
// STEP 5. Delete the lambda population
offspringPopulation.clear() ;
} // while
// Return a population with the best individual
SolutionSet resultPopulation = new SolutionSet(1) ;
resultPopulation.add(population.get(0)) ;
return resultPopulation ;
} // execute
} // SSGA
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -