⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ga_main.java

📁 这是多目标进化算法包
💻 JAVA
字号:
/** * GA_main.java * * @author Antonio J. Nebro * @version 1.0 */package jmetal.metaheuristics.singleObjective.geneticAlgorithm;import jmetal.base.*;import jmetal.base.operator.crossover.*   ;import jmetal.base.operator.mutation.*    ; import jmetal.base.operator.selection.*   ;import jmetal.problems.singleObjective.*  ; import jmetal.util.JMException;/** * This class runs a single-objective genetic algorithm (GA). The GA can be  * a steady-state GA (class SSGA) or a generational GA (class GGA). The OneMax * problem is used to test the algorithms. */public class GA_main {  public static void main(String [] args) throws JMException {    Problem   problem   ;         // The problem to solve    Algorithm algorithm ;         // The algorithm to use    Operator  crossover ;         // Crossover operator    Operator  mutation  ;         // Mutation operator    Operator  selection ;         // Selection operator                int bits ; // Length of bit string in the OneMax problem        bits = 512 ;    //problem = new OneMax(bits);    //problem = new Sphere(20, "Real") ;    problem = new Griewank(20, "Real") ;        algorithm = new SSGA(problem);    //algorithm = new GGA(problem) ;        /* Algorithm parameters*/    algorithm.setInputParameter("populationSize",100);    algorithm.setInputParameter("maxEvaluations",1000000);        // Mutation and Crossover for Real codification     crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover");                       crossover.setParameter("probability",0.9);                       crossover.setParameter("distributionIndex",20.0);    mutation = MutationFactory.getMutationOperator("PolynomialMutation");                        mutation.setParameter("probability",1.0/problem.getNumberOfVariables());    mutation.setParameter("distributionIndex",20.0);            /**    // Mutation and Crossover for Binary codification     crossover = CrossoverFactory.getCrossoverOperator("SinglePointCrossover");                       crossover.setParameter("probability",0.95);                       mutation = MutationFactory.getMutationOperator("BitFlipMutation");                        mutation.setParameter("probability",1.0/bits);     */        /* Selection Operator */    selection = SelectionFactory.getSelectionOperator("BinaryTournament") ;                                    /* Add the operators to the algorithm*/    algorithm.addOperator("crossover",crossover);    algorithm.addOperator("mutation",mutation);    algorithm.addOperator("selection",selection);     /* Execute the Algorithm */    long initTime = System.currentTimeMillis();    SolutionSet population = algorithm.execute();    long estimatedTime = System.currentTimeMillis() - initTime;    System.out.println("Total execution time: " + estimatedTime);    /* Log messages */    System.out.println("Objectives values have been writen to file FUN");    population.printObjectivesToFile("FUN");    System.out.println("Variables values have been writen to file VAR");    population.printVariablesToFile("VAR");            }//main} // GA_main

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -