⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtlz5.java

📁 这是多目标进化算法包
💻 JAVA
字号:
/**
 * DTLZ5.java
 *
 * @author Antonio J. Nebro
 * @author Juanjo Durillo
 * @version 1.0
 * Created on 16 de octubre de 2006, 17:30
 */
package jmetal.problems.DTLZ;

import jmetal.base.*;
import jmetal.base.Configuration.*;
import jmetal.util.JMException;

/**
 * Class representing problem DTLZ5
 */
public class DTLZ5 extends Problem{

 /**
  * Creates a default DTLZ5 problem instance (12 variables and 3 objectives)
  * @param solutionType The solution type must "Real" or "BinaryReal". 
  */
  public DTLZ5(String solutionType){
    this(12,3,solutionType);
  } // DTLZ5
  
 /**
  * Creates a new DTLZ5 problem instance
  * @param numberOfVariables Number of variables
  * @param numberOfObjectives Number of objective functions
  * @param solutionType The solution type must "Real" or "BinaryReal". 
  */
  public DTLZ5(Integer numberOfVariables, 
  		         Integer numberOfObjectives, 
  		         String  solutionType) {
    numberOfVariables_  = numberOfVariables.intValue();
    numberOfObjectives_ = numberOfObjectives.intValue();
    numberOfConstraints_= 0;
    problemName_        = "DTLZ5";
        
    lowerLimit_ = new double[numberOfVariables_];
    upperLimit_ = new double[numberOfVariables_];        
    for (int var = 0; var < numberOfVariables_; var++){
      lowerLimit_[var] = 0.0;
      upperLimit_[var] = 1.0;
    }    
     
    solutionType_ = Enum.valueOf(SolutionType_.class, solutionType) ; 
    
    // All the variables are of the same type, so the solutionType name is the
    // same than the variableType name
    variableType_ = new VariableType_[numberOfVariables_];
    for (int var = 0; var < numberOfVariables_; var++){
      variableType_[var] = Enum.valueOf(VariableType_.class, solutionType) ;    
    } // for
  } // DTLZ5
    
  /** 
  * Evaluates a solution 
  * @param solution The solution to evaluate
   * @throws JMException 
  */      
  public void evaluate(Solution solution) throws JMException {
    DecisionVariables gen  = solution.getDecisionVariables();
    
    double [] x = new double[numberOfVariables_];
    double [] f = new double[numberOfObjectives_];
    double [] theta = new double[numberOfObjectives_-1];
    double g = 0.0;
    int k = numberOfVariables_ - numberOfObjectives_ + 1;
                              
    for (int i = 0; i < numberOfVariables_; i++)
      x[i] = gen.variables_[i].getValue();
                
    for (int i = numberOfVariables_ - k; i < numberOfVariables_; i++)
      g += (x[i] - 0.5)*(x[i] - 0.5);        
        
    double t = java.lang.Math.PI  / (4.0 * (1.0 + g)); 
    
    theta[0] = x[0] * java.lang.Math.PI / 2.0;  
    for (int i = 1; i < (numberOfObjectives_-1); i++) 
      theta[i] = t * (1.0 + 2.0 * g * x[i]);			
        
    for (int i = 0; i < numberOfObjectives_; i++)
      f[i] = 1.0 + g;
        
    for (int i = 0; i < numberOfObjectives_; i++){
      for (int j = 0; j < numberOfObjectives_ - (i + 1); j++)            
        f[i] *= java.lang.Math.cos(theta[j]);                
        if (i != 0){
          int aux = numberOfObjectives_ - (i + 1);
          f[i] *= java.lang.Math.sin(theta[aux]);
        } // if
    } //for
        
    for (int i = 0; i < numberOfObjectives_; i++)
      solution.setObjective(i,f[i]);                
  } // evaluate
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -