📄 confmat.m
字号:
%CONFMAT Construct confusion matrix% % [C,NE,LABLIST] = CONFMAT(LAB1,LAB2,METHOD,FID)%% INPUT% LAB1 Set of labels% LAB2 Set of labels% METHOD 'count' (default) to count number of co-occurences in% LAB1 and LAB2, 'disagreement' to count relative% non-co-occurrence.% FID Write text result to file%% OUTPUT% C Confusion matrix% NE Total number of errors% LABLIST Unique labels in LAB1 and LAB2%% DESCRIPTION% Constructs a confusion matrix C between two sets of labels LAB1 % (corresponding to the rows in C) and LAB2 (the columns in C). The order of % the rows and columns is returned in LABLIST. NE is the total number of % errors (sum of non-diagonal elements in C).%% When METHOD = 'count' (default), co-occurences in LAB1 and LAB2 are counted % and returned in C. When METHOD = 'disagreement', the relative disagreement % is returned in NE, and is split over all combinations of labels in C% (such that the rows sum to 1). (The total disagreement for a class equals% one minus the sensitivity for that class as computed by TESTC).%% [C,NE,LABLIST] = CONFMAT(D,METHOD)%% If D is a classification result D = A*W, the labels LAB1 and LAB2 are % internally retrieved by CONFMAT before computing the confusion matrix.%% When no output argument is specified, or when FID is given, the% confusion matrix is displayed or written a to a text file.%% EXAMPLE% Typical use of CONFMAT is the comparison of true and and estimated labels% of a testset A by application to a trained classifier W: % LAB1 = GETLABELS(A); LAB2 = A*W*LABELD.% More examples can be found in PREX_CONFMAT, PREX_MATCHLAB.% % SEE ALSO% MAPPINGS, DATASETS, GETLABELS, LABELD% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: confmat.m,v 1.5 2007/11/09 10:50:32 duin Exp $function [CC,ne,lablist1,lablist2] = confmat (arg1,arg2,arg3,fid) prtrace(mfilename); % Check arguments. if nargin < 4, fid = 1; end if nargin < 3 | isempty(arg3) if isdataset(arg1) lab1 = getlabels(arg1); lab2 = arg1*labeld; if nargin < 2| isempty(arg2) method = 'count'; prwarning(4,'no method supplied, assuming count'); else method = arg2; end else method = 'count'; prwarning(4,'no method supplied, assuming count'); lab1 = arg1; if (nargin < 2 | isempty(arg2)) error('Second label list not supplied') end lab2 = arg2; end else lab1 = arg1; lab2 = arg2; method = arg3; end if nargin < 2 if ~isdataset(arg1) error('two labellists or one dataset should be supplied') end end % Renumber LAB1 and LAB2 and find number of unique labels. m = size(lab1,1); if (m~=size(lab2,1)) error('LAB1 and LAB2 have to have the same lengths.'); end [nlab1,lablist1] = renumlab(lab1); [nlab2,lablist2] = renumlab(lab2); %[nlab1,nlab2,lablist] = renumlab(lab1,lab2); n1 = max(nlab1); n2 = max(nlab2); n = max(n1,n2); % Construct matrix of co-occurences (confusion matrix). C = zeros(n1+1,n2+1); for i = 0:n1 K = find(nlab1==i); if (isempty(K)) C(i+1,:) = zeros(1,n2+1); else for j = 0:n2 C(i+1,j+1) = length(find(nlab2(K)==j)); end end end % position rejects and unlabeled object at the end of the matrix D = C; D(1:end-1,1:end-1) = C(2:end,2:end); D(end,:) = C(1,:); D(1:end-1,end) = C(2:end,1); C = D; D = D(1:end-1,1:end-1); DD = D(1:min(n1,n2),1:min(n1,n2)); % Calculate number of errors ('count') or disagreement ('disagreement'). % Neglect rejects switch (method) case 'count' ne = sum(sum(D)) - sum(diag(DD)); % Diagonal entries are correctly % classified, so all off-diagonal % entries denote wrong ones. case 'disagreement' ne = (sum(sum(D)) - sum(diag(DD)))/m; % Relative sum of off-diagonal % entries. E = repmat(sum(D,2),1,n2); % Disagreement = 1 - D = ones(n1,n2)-D./E; % relative co-occurence. D = D / (n-1); otherwise error('unknown method'); end %Distinguish 'rejects / no_labels' from 'non_rejects / fully labeled' if (any(C(:,end) ~= 0) | any(C(end,:)~=0)) & strcmp(method,'count') n1 = n1+1; n2 = n2+1; labch = char(strlab(lablist2),'reject'); labcv = char(strlab(lablist1),'No'); else labch = strlab(lablist2); labcv = strlab(lablist1); %labcv = labch; C = D; end % If no output argument is specified, pretty-print C. if (nargout == 0) | nargin == 4 if nargin < 4, fid = 1; end % Make sure labels are stored in LABC as matrix of characters, % max. 6 per label. if (size(labch,2) > 6) labch = labch(:,1:6); %labcv = labcv(:,1:6); end if (size(labch,2) < 5) labch = [labch repmat(' ',n2,ceil((5-size(labch,2))/2))]; labcv = [labcv repmat(' ',n1,ceil((5-size(labcv,2))/2))]; end nspace = max(size(labcv,2)-7,0); cspace = repmat(' ',1,nspace); %fprintf(fid,['\n' cspace ' | Estimated Labels']); fprintf(fid,['\n True ' cspace '| Estimated Labels']); fprintf(fid,['\n Labels ' cspace '|']); for j = 1:n2, fprintf(fid,'%7s',labch(j,:)); end fprintf(fid,'|'); fprintf(fid,' Totals'); fprintf(fid,'\n '); fprintf(fid,repmat('-',1,8+nspace)); fprintf(fid,'|%s',repmat('-',1,7*n2)); fprintf(fid,'|-------'); fprintf(fid,'\n '); for j = 1:n1 fprintf(fid,' %-7s|',labcv(j,:)); switch (method) case 'count' fprintf(fid,'%5i ',C(j,:)'); fprintf(fid,'|'); fprintf(fid,'%5i',sum(C(j,:))); case 'disagreement' fprintf(fid,' %5.3f ',C(j,:)'); fprintf(fid,'|'); fprintf(fid,' %5.3f ',sum(C(j,:))); end fprintf(fid,'\n '); end fprintf(fid,repmat('-',1,8+nspace)); fprintf(fid,'|%s',repmat('-',1,7*n2)); fprintf(fid,'|-------'); fprintf(fid,['\n Totals ' cspace '|']); switch (method) case 'count' fprintf(fid,'%5i ',sum(C)); fprintf(fid,'|'); fprintf(fid,'%5i',sum(C(:))); case 'disagreement' fprintf(fid,' %5.3f ',sum(C)); fprintf(fid,'|'); fprintf(fid,' %5.3f ',sum(C(:))); end fprintf(fid,'\n\n'); end if nargout > 0 CC = C; endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -