📄 gendath.m
字号:
%GENDATH Generation of Highleyman classes% % A = GENDATH(N,LABTYPE)%% INPUT% N Number of objects (optional; default: [50,50])% LABTYPE Label type (optional; default: 'crisp')%% OUTPUT% A Generated dataset%% DESCRIPTION% Generation of a 2-dimensional 2-class dataset A of N objects% according to Highleyman. %% The two Highleyman classes are defined by % 1: Gauss([1 1],[1 0; 0 0.25]).% 2: Gauss([2 0],[0.01 0; 0 4]).% Class priors are P(1) = P(2) = 0.5 %% If N is a vector of sizes, exactly N(I) objects are generated% for class I, I = 1,2.%% LABTYPE defines the desired label type: 'crisp' or 'soft'. In the % latter case true posterior probabilities are set for the labels.%% Defaults: N = [50,50], LABTYPE = 'crisp'.% % EXAMPLES% PREX_PLOTC, PREX_CLEVAL%% SEE ALSO% DATASETS, GAUSS, PRDATASETS% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: gendath.m,v 1.4 2007/04/21 23:05:59 duin Exp $function A = gendath(N,labtype) prtrace(mfilename); if nargin < 1, N = [50, 50]; end if nargin < 2, labtype = 'crisp'; end GA = [1 0; 0 0.25]; GB = [0.01 0; 0 4]; G = cat(3,GA,GB); p = [0.5 0.5]; N = genclass(N,p); U = dataset([1 1; 2 0],[1 2]','prior',p); U = setprior(U,p); A = gauss(N,U,G); A = setname(A,'Highleyman Dataset'); switch labtype case 'crisp' ; case 'soft' W = nbayesc(U,cat(3,GA,GB)); targets = A*W*classc; A = setlabtype(A,'soft',targets); otherwise error(['Label type ' labtype ' not supported']) end return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -