📄 svc_nu.m
字号:
%SVC_NU Support Vector Classifier: NU algorithm% % This routine is outdated, use NUSVC instead%% [W,J,C] = SVC(A,TYPE,PAR,NU,MC,PD)%% INPUT% A Dataset% TYPE Type of the kernel (optional; default: 'p')% PAR Kernel parameter (optional; default: 1)% NU Regularization parameter (0 < NU < 1): expected fraction of SV % (optional; default: max(leave-one-out 1_NN error,0.05))%% MC Do or do not data mean-centering (optional; default: 1 (to do))% PD Do or do not the check of the positive definiteness (optional; default: 1 (to do))%% OUTPUT% W Mapping: Support Vector Classifier% J Object identifiers of support objects % C Equivalent C regularization parameter of SVM-C algorithm %% DESCRIPTION% Optimizes a support vector classifier for the dataset A by % quadratic programming. The classifier can be of one of the types % as defined by PROXM. Default is linear (TYPE = 'p', PAR = 1). In J % the identifiers of the support objects in A are returned.%% NU belongs to the interval (0,1). NU close to 1 allows for more class overlap.% Default NU = 0.25.% % NU is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where% Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX is supplied % to the routine it will be changed to the NU_MAX.%% If NU is less than some NU_MIN which depends on the overlap between the classes % the algorithm will typically take a long time to converge (if at all). % So, it is advisable to set NU larger than expected overlap.%% Output is rescaled in such a manner as if it were returned by SVC with the parameter C.%%% SEE ALSO% SVO_NU, SVO, SVC, MAPPINGS, DATASETS, PROXM% Copyright: S.Verzakov, s.verzakov@ewi.tudelft.nl % Based on SVC.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: svc_nu.m,v 1.5 2007/06/13 22:00:27 duin Exp $function [W, J, C] = svc_nu(a,type,par,nu,mc,pd) prtrace(mfilename); warning('SVC_NU is outdated, use NUSVC instead') if nargin < 2 | ~isa(type,'mapping') if nargin < 6 pd = 1; end if nargin < 5 mc = 1; end if nargin < 4 | isempty(nu) nu = []; prwarning(3,'Regularization parameter nu set to NN error\n'); end if nargin < 3 | isempty(par) par = 1; prwarning(3,'Kernel parameter par set to 1\n'); end if nargin < 2 | isempty(type) type = 'p'; prwarning(3,'Polynomial kernel type is used\n'); end if nargin < 1 | isempty(a) W = mapping(mfilename,{type,par,nu,mc,pd}); W = setname(W,'Support Vector Classifier (nu version)'); return; end islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a,'objects'); [m,k,c] = getsize(a); nlab = getnlab(a); if isempty(nu), nu = max(testk(a,1),0.01); end % The SVC is basically a 2-class classifier. More classes are % handled by mclassc. if c == 2 % two-class classifier % Compute the parameters for the optimization: y = 3 - 2*nlab; if mc u = mean(a); a = a -ones(m,1)*u; else u = []; end K = a*proxm(a,type,par); % Perform the optimization: [v,J,C] = svo_nu(+K,y,nu,pd); % Store the results: W = mapping(mfilename,'trained',{u,a(J,:),v,type,par},getlablist(a),k,2); %W = cnormc(W,a); W = setname(W,'Support Vector Classifier (nu version)'); W = setcost(W,a); J = a.ident(J); else % multi-class classifier: [W,J,C] = mclassc(a,mapping(mfilename,{type,par,nu,mc,pd}),'single'); end else % execution nodatafile(a); w = +type; m = size(a,1); % The first parameter w{1} stores the mean of the dataset. When it % is supplied, remove it from the dataset to improve the numerical % precision. Then compute the kernel matrix using proxm: if isempty(w{1}) d = a*proxm(w{2},w{4},w{5}); else d = (a-ones(m,1)*w{1})*proxm(w{2},w{4},w{5}); end % Data is mapped by the kernel, now we just have a linear % classifier w*x+b: d = [d ones(m,1)] * w{3}; d = sigm([d -d]); W = setdat(a,d,type); end return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -