📄 pls_apply.m
字号:
%pls_apply Partial Least Squares (applying)%% Y = pls_apply(X,B)% Y = pls_apply(X,B,Options)%% INPUT% X [N -by- d_X] the input data matrix, N samples, d_X variables% B [d_X -by- d_Y] regression matrix: Y_new = X_new*B% (X_new here after preprocessing, Y_new before% un-preprocessing; preprocessing and% un-preprocessing could be done automatically% (than Options contains info about% preprocessing) or manually)% Options structure returned by pls_train (if not supplied then will% be no preprocessing performed) %% OUTPUT% Y [N -by- d_Y] the output data matrix, N samples, d_Y variables%% DESCRIPTION% Applys PLS (Partial Least Squares) regression model%% SEE ALSO% pls_train% Copyright: S.Verzakov, serguei@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: pls_apply.m,v 1.1 2007/08/28 11:00:39 davidt Exp $function Y = pls_apply(X,B,Options)if nargin < 3 Options = [];endDefaultOptions.X_centering = [];DefaultOptions.Y_centering = [];DefaultOptions.X_scaling = [];DefaultOptions.Y_scaling = [];Options = pls_updstruct(DefaultOptions, Options);[N, d_X] = size(X);[d_XB, d_Y, M] = size(B);if d_X ~= d_XB error('size(X,2) must be equal to size(B,1)');endX = pls_prepro(X, Options.X_centering, Options.X_scaling);Y = zeros(N,d_Y,M);for i=1:M Y(:,:,i) = pls_prepro(X*B(:,:,i), Options.Y_centering, Options.Y_scaling, -1);endreturn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -