📄 logdens.m
字号:
%LOGDENS Force density based classifiers to use log-densities
%
% V = LOGDENS(W)
% V = W*LOGDENS
%
% INPUT
% W Density based trained classifier
%
% OUTPUT
% V Log-density based trained classifier
%
% DESCRIPTION
% Density based classifiers suffer from a low numeric accuracy in the tails
% of the distributions. Especially for overtrained or high dimensional
% classifiers this may cause zero-density estimates for many test samples,
% resulting in a bad performance. This can be avoided by computing
% log-densities offered by this routine. This works for all classifiers
% based on normal distributions (e.g. LDC, QDC, MOGC) and Parzen estimates
% (PARZENC, PARZENDC). The computation of log-densities is , in order to be
% effective, combined with a normalisation, resulting in posterior
% distributions. As a consequence, the possibility to output densities is
% lost.
%
% SEE ALSO
% MAPPINGS, LDC, UDC, QDC, MOGC, PARZENC, PARZENDC, NORMAL_MAP, PARZEN_MAP
% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function v = logdens(w)
prtrace(mfilename);
if (nargin < 1 | isempty(w))
v = mapping(mfilename,'combiner');
return
else
mfile = getmapping_file(w);
if isuntrained(w)
v = mapping('sequential','untrained',{w,logdens});
else
if (~strcmp(mfile,'normal_map') & ~strcmp(mfile,'parzen_map'))
error('LOGDENS can only be applied to normal densities and Parzen estimators')
end
v = classc(w);
end
end
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -