📄 classim.m
字号:
%CLASSIM Classify image and return resulting label image%% LABELS = CLASSIM(Z)% LABELS = CLASSIM(A,W)% LABELS = A*W*CLASSIM%% INPUT% Z Classified dataset, or% A,W Dataset and classifier mapping%% OUTPUT% LABELS Label image% When no output is requested, the label image is displayed.%% DESCRIPTION% Returns an image with the labels of the classified dataset image Z% (typically, the result of a mapping or classification A*W in which A is % a set of images stored as features using IM2FEAT). For each object in% Z (a pixel), a numeric class label is returned. The colormap is loaded% automatically.%% Note that if the number of classes is small, e.g. 2, an appropriate % colormap has to be loaded for displaying the result by IMAGE(LABELS), % or more appropriately, LABELS should be multiplied such that the minimum % and maximum of LABELS are well spread in the [1,64] interval of the % standard colormaps.%% EXAMPLES% See PREX_SPATM for a possible use of CLASSIM.%% SEE ALSO% MAPPINGS, DATASETS, IM2FEAT, LABELD% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: classim.m,v 1.3 2007/09/09 21:21:20 duin Exp $function labels = classim(a,w) prtrace(mfilename); % Untrained mapping if nargin == 0 labels = mapping('classim','fixed'); return end if nargin == 2 ismapping(w); a = a*w; end % Assertion: generate an error, if a is not a dataset with objects as pixels isfeatim(a); if size(a,2) == 1 % Assuming the 2-class case J = 2 - (double(a) >= 0); else % Multi-class problem [mx,J] = max(double(a),[],2); end %fl = renumlab(getfeatlab(a)); %labels = reshape(fl(J),getobjsize(a)); labels = reshape(J,getobjsize(a)); % Display the label image if nargout == 0 n = 61/(size(a,2) +0.5); imagesc(labels*n) colormap colorcube clear labels endreturn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -