📄 gendatp.m
字号:
%GENDATP Parzen density data generation% % B = GENDATP(A,N,S,G)% % INPUT% A Dataset% N Number(s) of points to be generated (optional; default: 50 per class)% S Smoothing parameter(s) % (optional; default: a maximum likelihood estimate based on A)% G Covariance matrix used for generation of the data % (optional; default: the identity matrix)%% OUTPUT% B Dataset of points generated according to Parzen density%% DESCRIPTION % Generation of a dataset B of N points by using the Parzen estimate of the% density of A based on a smoothing parameter S. N might be a row/column % vector with different numbers for each class. Similarly, S might be % a vector with different smoothing parameters for each class. If S = 0, % then S is determined by a maximum likelihood estimate using PARZENML. % If N is a vector, then exactly N(I) objects are generated for the class I. % G is the covariance matrix to be used for generating the data. G may be % a 3-dimensional matrix storing separate covariance matrices for each class.% % SEE ALSO% DATASETS, GENDATK, GENDATT%% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: gendatp.m,v 1.2 2006/03/08 22:06:58 duin Exp $function B = gendatp(A,N,s,G) prtrace(mfilename); if (nargin < 1) error('No dataset found'); end A = dataset(A); A = setlablist(A); % remove empty classes first [m,k,c] = getsize(A); p = getprior(A); if (nargin < 2) prwarning(4,'Number of points not specified, 50 per class assumed.'); N = repmat(50,1,c); end if (nargin < 3) prwarning(4,'Smoothing parameter(s) not specified, to be determined be an ML estimate.'); s = 0; end if (length(s) == 1) s = repmat(s,1,c); end if (length(s) ~= c) error('Wrong number of smoothing parameters.') end if (nargin < 4) prwarning(4,'Covariance matrices not specified, identity matrix assumed.'); covmat = 0; % covmat indicates whether a covariance matrix should be used % 0 takes the identity matrix as the covariance matrix else covmat = 1; if (ndims == 2) G = repmat(G,[1 1 c]); end if any(size(G) ~= [k k c]) error('Covariance matrix has a wrong size.') end end N = genclass(N,p); lablist = getlablist(A); B = []; labels = []; % Loop over classes. for j=1:c a = getdata(A,j); ma = size(a,1); if (s(j) == 0) % Estimate the smoothing parameter. h = parzenml(a); else h = s(j); end if (~covmat) b = a(ceil(rand(N(j),1) * ma),:) + randn(N(j),k).*repmat(h,N(j),k); else b = b(ceil(rand(N(j),1) * ma),:) + ... gauss(N(j),zeros(1,k),G(:,:,j)).*repmat(h,N(j),1); end B = [B;b]; labels = [labels; repmat(lablist(j,:),N(j),1)]; end B = dataset(B,labels,'prior',p); B = set(B,'featlab',getfeatlab(A),'name',getname(A),'featsize',getfeatsize(A)); return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -