📄 meancov.m
字号:
%MEANCOV Estimation of the means and covariances from multiclass data% % [U,G] = MEANCOV(A,N)% % INPUT% A Dataset% N Normalization to use for calculating covariances: by M, the number% of samples in A (N = 1) or by M-1 (default, unbiased, N = 0).%% OUTPUT% U Mean vectors% G Covariance matrices%% DESCRIPTION % Computation of a set of mean vectors U and a set of covariance matrices G% of the C classes in the dataset A. The covariance matrices are stored as a% 3-dimensional matrix G of the size K x K x C, the class mean vectors as a% labeled dataset U of the size C x K.%% The use of soft labels or target labels is supported.% % SEE ALSO % DATASETS, GAUSS, NBAYESC, DISTMAHA% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: meancov.m,v 1.4 2007/04/13 09:30:54 duin Exp $function [U,G] = meancov(a,n) prtrace(mfilename); % N determines whether the covariances are normalized by M (N = 1) or by % M-1 (unbiased, N = 0), where M is the number of objects. if (nargin < 2 | isempty(n)) prwarning(4,'normalisation not specified, assuming by M-1'); n = 0; end if (n ~= 1) & (n ~= 0) error('Second parameter should be either 0 or 1.') end if (isdouble(a)) % A is a matrix: compute mean and covariances U = mean(a); % in the usual way. if nargout > 1 G = cov(a,n); end elseif (isdatafile(a)) if nargout < 2 U = meancov_datafile(a,n); else [U,G] = meancov_datafile(a,n); end elseif (isdataset(a)) [m,k,c] = getsize(a); if nargout == 2 G = zeros(k,k,c); end if (islabtype(a,'crisp')) if (c==0) % special solution if all data is unlabeled U = mean(+a); if nargout > 1 G = cov(+a,n); end else for i = 1:c J = findnlab(a,i); if isempty(J) U(i,:) = repmat(NaN,1,k); if nargout > 1 G(:,:,i) = repmat(NaN,k,k); end else U(i,:) = mean(a(J,:),1); if (nargout > 1) G(:,:,i) = covm(a(J,:),n); end end end end labu = getlablist(a); elseif (islabtype(a,'soft')) problab = gettargets(a); % Here we also have to be careful for unlabeled data if (c==0) prwarning(2,'The dataset has soft labels but no targets defined: using targets 1'); U = mean(+a); if nargout > 1 G = cov(+a,n); end else U = zeros(c,k); for i = 1:c % Calculate relative weights for the means. g = problab(:,i); nn = sum(g); g = g/mean(g); U(i,:) = mean(a.*repmat(g,1,k)); % Weighted mean vectors if (nargout > 1) u = mean(a.*repmat(sqrt(g),1,k)); % this appears to be needed to weight cov terms properly G(:,:,i) = covm(a.*repmat(sqrt(g),1,k),1) - U(i,:)'*U(i,:) + u'*u; % Re-normalise by M-1 if requested. if (n == 0) G(:,:,i) = m*G(:,:,i)/(m-1); end end end end labu = getlablist(a); else % Default action. U = mean(a); if nargout > 1 G = covm(a,n); end labu = []; end % Add attributes of A to U. U = dataset(U,labu,'featlab',getfeatlab(a), ... 'featsize',getfeatsize(a)); if (~islabtype(a,'targets')) % p = getprior(a); U = setprior(U,a.prior); end else error('Illegal datatype') endreturn%MEANCOV Datafile overloadfunction [u,g] = meancov_datafile(a,n) if nargin < 2, n = []; end [m,k,c] = getsize(a); k = 0; % just for detecting first loop next = 1; while next > 0 [b,next] = readdatafile(a,next); if k == 0 k = size(b,2); if c == 0 u = zeros(1,k); else u = zeros(c,k); end if nargout > 1 if c == 0 g = zeros(k,k); else g = zeros(k,k,c); end end end %compute for each call to readdatafile contributions to mean and cov bb = + b; if c == 0 u = u + sum(bb,1); else nlab = getnlab(b); for j=1:size(b,1) if nlab(j) > 0 u(nlab(j),:) = u(nlab(j),:) + bb(j,:); if nargout > 1 g(:,:,nlab(j)) = g(:,:,nlab(j)) + bb(j,:)'*bb(j,:); end end end end end f = classsizes(a); u = u ./ repmat(f',1,k); if nargout == 2 for j=1:c g(:,:,j) = g(:,:,j)/f(j) - u(j,:)'*u(j,:); if isempty(n) | n == 0 g(:,:,j) = (f(j)/(f(j)-1))*g(:,:,j); end end end u = dataset(u,getlablist(b)); u.prior = b.prior;return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -