📄 gaussm.m
字号:
%GAUSSM Mixture of Gaussians density estimate%% W = GAUSSM(A,K,R,S,M)% W = A*GAUSSM([],K,R,S,M);%% INPUT% A Dataset% K Number of Gaussians to use (default: 1)% R,S,M Regularization parameters, 0 <= R,S <= 1, see QDC%% OUTPUT% W Mixture of Gaussians density estimate%% DESCRIPTION% Estimation of a PDF for the dataset A by a Mixture of Gaussians% procedure. Use is made of EMCLUST(A,QDC,K). Unlabeled objects are% neglected, unless A is entirely unlabeled or double. Then all objects% are used. If A is a multi-class crisp labeled dataset the densities are% estimated class by class and then weighted and combined according their% prior probabilities. In all cases, just single density estimator W is% computed.%% Note that it is necessary to set the label type of A to soft labels% (A = LABTYPE(A,'soft') in order to use the traditional EM algorithm% based on posterior probabilities instead of using crisp labels.% See also EMCLUST.% % The mapping W may be applied to a new dataset B using DENSITY = B*W.%% SEE ALSO% DATASETS, MAPPINGS, QDC, MOGC, EMCLUST, PLOTM, TESTC% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: gaussm.m,v 1.6 2008/03/20 07:55:24 duin Exp $function w = gaussm(a,n,r,s,dim) prtrace(mfilename) if nargin < 5, dim = []; end if nargin < 4, s = 0; end if nargin < 3, r = 0; end if (nargin < 2) prwarning (2,'number of Gaussians not specified, assuming 1.'); n = 1; end % No arguments specified: return an empty mapping. mapname = 'Mixture of Gaussians'; if (nargin < 1) | (isempty(a)) w = mapping(mfilename,{n,r,s,dim}); w = setname(w,mapnmae); return end labname = getname(a); if ((~isdataset(a) & ~isdatafile(a)) | (getsize(a,3) ~= 1 & islabtype(a,'crisp'))) w = mclassm(a,mapping(mfilename,n),'weight'); w = setlabels(w,labname); w = setname(w,mapname); return end [m,k] = getsize(a); if n == 1 [U,G] = meancov(a); res.mean = +U; res.cov = G; res.prior= 1; w = normal_map(res,labname,k,1); else [e,v] = emclust(a,qdc([],r,s,dim),n); ncomp0 = size(v.data.mean,1); iter = 0; while (ncomp0 ~= n & iter < 5) % repeat until exactly n components are found [e,v1] = emclust(a,qdc([],r,s,m),n); ncomp1 = size(v1.data.mean,1); if ncomp1 > ncomp0 v = v1; ncomp0 = ncomp1; end iter = iter + 1; end res = v.data; res.nlab = ones(n,1); % defines that all Gaussian components have to be % combined into a single class. w = mapping('normal_map','trained',res,labname,k,1); end w = setname(w,mapname);return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -