⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parzenml.m

📁 The pattern recognition matlab toolbox
💻 M
字号:
%PARZENML Optimum smoothing parameter in Parzen density estimation.% %   H = PARZENML(A)% % INPUT	%   A    Input dataset%% OUTPUT%   H    Scalar smoothing parameter (in case of crisp labels)%        Vector with smoothing parameters (in case of soft labels)%% DESCRIPTION% Maximum likelihood estimation for the smoothing parameter H in the % Parzen denstity estimation of the data in A. A leave-one out % maximum likelihood estimation is used. %% The dataset A can either be crisp or soft labeled. In case of crisp% labeling the class information is not used and a single smoothing % parameter is estimated. In case of soft labels a smoothing parameter% for every class is estimated and objects are weighted in relation to% their class weigthts (soft label value). % It may be profitable to scale the data before calling it. eg. % WS = SCALEM(A,'variance'); A = A*WS.% % SEE ALSO% DATASETS, MAPPINGS, SCALEM, SELDAT, PARZENM, PARZENDC, PRPROGRESS% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: parzenml.m,v 1.9 2007/11/20 10:27:24 duin Exp $function h = parzenml(A,fid)	prtrace(mfilename);		if nargin < 2, fid = []; end		A = testdatasize(A);	A = testdatasize(A,'objects');	if islabtype(A,'crisp')		h = parzenmlc(A,fid);	elseif islabtype(A,'soft')		h = parzenmls(A,fid);	else		error('Label type should be either ''crisp'' or ''soft''')	end		return	function h = parzenmlc(A,fid) %crisp version	[m,k] = size(A);	DD= distm(+A) + diag(1e70*ones(1,m));	E = min(DD);		h1 = sqrt(max(E));    % initial estimate of h	F1 = derlc(DD,E,h1,k); % derivative	len1 = prprogress(fid,'parzenml:');	len2 = prprogress(fid,' %6.4f   %6.3e',h1,F1);	if abs(F1) < 1e-70 		h = h1;		closemess(fid,len1+len2);		prwarning(4,'jump out\n');		return;	end		a1 = (F1+m*k)*h1*h1;	h2 = sqrt(a1/(m*k));  % second guess	F2 = derlc(DD,E,h2,k); % derivative	closemess(fid,len2);	len2 = prprogress(fid,' %6.4f   %6.3e',h2,F2);	if (abs(F2) < 1e-70) | (abs(1e0-h1/h2) < 1e-6) 		h = h2;		closemess(fid,len1+len2);		prwarning(4,'jump out\n');		return	end		% find zero-point of derivative to optimize h^2	% stop if improvement is small, or h does not change significantly		alf = 1;	while abs(1e0-F2/F1) > 1e-4 & abs(1e0-h2/h1) > 1e-3 & abs(F2) > 1e-70		h3 = (h1*h1*h2*h2)*(F2-F1)/(F2*h2*h2-F1*h1*h1);		if h3 < 0 % this should not happen			h3 = sqrt((F2+m*k)*h2*h2/(m*k));		else			h3 = sqrt(h3);		end		h3 = h2 +alf*(h3-h2);		F3 = derlc(DD,E,h3,k);		closemess(fid,len2);		len2 = prprogress(fid,' %6.4f   %6.3e',h3,F3);		F1 = F2; F2 = F3;		h1 = h2; h2 = h3;		alf = alf*0.99; % decrease step size	end	h = h2;	closemess(fid,len1+len2)returnfunction F = derlc(DD,E,h,k) % crisp version	% computation of the likelihood derivative for Parzen density	% given distances D and their object minima E (for increased accuracy)	m = size(DD,1);	warning off MATLAB:divideByZero;		Y = (DD-repmat(E,m,1))/(2*h*h); % correct for minimum distance to save accuracy	warning on MATLAB:divideByZero;	IY = find(Y<20);                % take small distance only, others don't contribute	P = zeros(m,m);	P(IY) = exp(-Y(IY));	PP = sum(P,2)';	FU = repmat(realmax,1,m);	J = find(PP~=0); 	FU(J) = 1./PP(J);	FF = sum(DD.*P,2);	warning off MATLAB:divideByZero;		F = (FU*FF)./(h*h) - m*k;	warning on MATLAB:divideByZero;returnfunction h = parzenmls(A,fid) %soft version	SS = gettargets(setlabtype(A,'soft'));	[m,k,c] = getsize(A);	DD= distm(+A) + diag(1e70*ones(1,m));	E = min(DD);	h = zeros(c,1);	h0 = sqrt(max(E));    % initial estimate of h		for j=1:c				S = SS(:,j);		h1 = h0;		F1 = derls(DD,E,h1,k,S); % derivative		len1 = prprogress(fid,'parzenml: class %i : ',j);		len2 = prprogress(fid,' %6.4f   %6.3e',h1,F1);		if abs(F1) < 1e-70 			h = h1;			prwarning(4,'jump out\n');			return;		end			a1 = (F1+m*k)*h1*h1;		h2 = sqrt(a1/(m*k));  % second guess		F2 = derls(DD,E,h2,k,S); % derivative		closemess(fid,len2);		len2 = prprogress(fid,' %6.4f   %6.3e',h2,F2);		if (abs(F2) < 1e-70) | (abs(1e0-h1/h2) < 1e-6) 			h(j) = h2;			prwarning(4,'jump out\n');			break;		end			% find zero-point of derivative to optimize h^2		% stop if improvement is small, or h does not change significantly			alf = 1;		while abs(1e0-F2/F1) > 1e-4 & abs(1e0-h2/h1) > 1e-3 & abs(F2) > 1e-70			h3 = (h1*h1*h2*h2)*(F2-F1)/(F2*h2*h2-F1*h1*h1);			if h3 < 0 % this should not happen				h3 = sqrt((F2+m*k)*h2*h2/(m*k));			else				h3 = sqrt(h3);			end			h3 = h2 +alf*(h3-h2);			F3 = derls(DD,E,h3,k,S);			closemess(fid,len2);			len2 = prprogress(fid,' %6.4f   %6.3e',h3,F3);			F1 = F2; F2 = F3;			h1 = h2; h2 = h3;			alf = alf*0.99; % decrease step size		end		h(j) = h2;		closemess(fid,len1+len2);	endreturnfunction F = derls(DD,E,h,k,S) %soft version	% computation of the likelihood derivative for Parzen density	% given distances D and their object minima E (for increased accuracy)	% S are the object weigths	c = size(S,2);                  % number of classes	m = size(DD,1);	Y = (DD-repmat(E,m,1))/(2*h*h); % correct for minimum distance to save accuracy	IY = find(Y<20);                % take small distance only, others don't contribute	F = 0;	for j=1:c		P = zeros(m,m);		P(IY) = exp(-Y(IY));		PP = S(:,j)'*P';		FU = repmat(realmax,1,m);		J = find(PP~=0);  		FU(J) = S(J,j)'./PP(J);		K = find(S(:,j)==0);		FU(K) = zeros(1,length(K));		FF = (DD.*P)*S(:,j);		F = F + (FU*FF)./(h*h);	end	F = F - sum(S(:))*k;return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -