📄 ridger.m
字号:
%RIDGER Ridge Regression%% W = RIDGER(X,LAMBDA)%% INPUT% X Regression dataset% LAMBDA Regularization parameter (default LAMBDA=1)%% OUTPUT% W Ridge regression mapping%% DESCRIPTION% Perform a ridge regression on dataset X, with the regularization% parameter LAMBDA.%% SEE ALSO% LASSOR, PLOTR, LINEARR% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction y = ridger(x,lambda)if nargin<2 lambda = 1;endif nargin<1 | isempty(x) y = mapping(mfilename,{lambda}); y = setname(y,'Ridge regression'); returnendif ~ismapping(lambda) %training [n,d] = size(x); y = gettargets(x); X = +x; beta = inv(X'*X + diag(repmat(lambda,d,1)))*X'*(y-mean(y)); W = [mean(y); beta]; % don't forget the offset y = mapping(mfilename,'trained',W,1,d,1); y = setname(y,'Ridge regression');else % evaluation w = getdata(lambda); [n,d] = size(x); out = [ones(n,1) +x]*w; y = setdat(x,out); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -