📄 pls_transform.m
字号:
%pls_transform Partial Least Squares transformation%% T = pls_transform(X,R)% T = pls_transform(X,R,Options)%% INPUT% X [N -by- d_X] the input data matrix, N samples, d_X variables% R [d_X -by- nLV] the transformation matrix: T_new = X_new*R% (X_new here after preprocessing, preprocessing and un-preprocessing % could be done automatically (than Options contains info about% preprocessing) or manually); normally, R as a field of XRes% output parameter of pls_train routine%% Options structure returned by pls_train (if not supplied then will be% no preprocessing performed) %% OUTPUT% T [N -by- nLV] scores -- transformed data%% DESCRIPTION% Applys PLS (Partial Least Squares) regression model%% SEE ALSO% pls_train, pls_apply% Copyright: S.Verzakov, serguei@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: pls_transform.m,v 1.1 2007/08/28 11:00:39 davidt Exp $function T = pls_transform(X,R,Options)if nargin < 3 Options = [];endDefaultOptions.X_centering = [];DefaultOptions.Y_centering = [];DefaultOptions.X_scaling = [];DefaultOptions.Y_scaling = [];Options = pls_updstruct(DefaultOptions, Options);[N, d_X] = size(X);[d_XR, nLv] = size(R);if d_X ~= d_XR error('size(X,2) must be equal to size(R,1)');endT = pls_prepro(X, Options.X_centering, Options.X_scaling)*R;return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -