📄 3c507.c
字号:
/* 3c507.c: An EtherLink16 device driver for Linux. *//* Written 1993 by Donald Becker. Copyright 1993 United States Government as represented by the Director, National Security Agency. This software may only be used and distributed according to the terms of the GNU Public License as modified by SRC, incorported herein by reference. The author may be reached as becker@super.org or C/O Supercomputing Research Ctr., 17100 Science Dr., Bowie MD 20715 Thanks go to jennings@Montrouge.SMR.slb.com ( Patrick Jennings) and jrs@world.std.com (Rick Sladkey) for testing and bugfixes. Mark Salazar <leslie@access.digex.net> made the changes for cards with only 16K packet buffers. Things remaining to do: Verify that the tx and rx buffers don't have fencepost errors. Move the theory of operation and memory map documentation. The statistics need to be updated correctly.*/static char *version = "3c507.c:v0.99-15f 2/17/94 Donald Becker (becker@super.org)\n";#include <linux/config.h>/* Sources: This driver wouldn't have been written with the availability of the Crynwr driver source code. It provided a known-working implementation that filled in the gaping holes of the Intel documention. Three cheers for Russ Nelson. Intel Microcommunications Databook, Vol. 1, 1990. It provides just enough info that the casual reader might think that it documents the i82586.*/#include <linux/kernel.h>#include <linux/sched.h>#include <linux/types.h>#include <linux/fcntl.h>#include <linux/interrupt.h>#include <linux/ptrace.h>#include <linux/ioport.h>#include <linux/in.h>#include <asm/system.h>#include <asm/bitops.h>#include <asm/io.h>#include <asm/dma.h>#include <errno.h>#include <memory.h>#include "dev.h"#include "eth.h"#include "skbuff.h"#include "arp.h"#ifndef HAVE_ALLOC_SKB#define alloc_skb(size, priority) (struct sk_buff *) kmalloc(size,priority)#define kfree_skbmem(addr, size) kfree_s(addr,size);#else#include <linux/malloc.h>#endif/* use 0 for production, 1 for verification, 2..7 for debug */#ifndef NET_DEBUG#define NET_DEBUG 1#endifstatic unsigned int net_debug = NET_DEBUG;/* Details of the i82586. You'll really need the databook to understand the details of this part, but the outline is that the i82586 has two seperate processing units. Both are started from a list of three configuration tables, of which only the last, the System Control Block (SCB), is used after reset-time. The SCB has the following fileds: Status word Command word Tx/Command block addr. Rx block addr. The command word accepts the following controls for the Tx and Rx units: */#define CUC_START 0x0100#define CUC_RESUME 0x0200#define CUC_SUSPEND 0x0300#define RX_START 0x0010#define RX_RESUME 0x0020#define RX_SUSPEND 0x0030/* The Rx unit uses a list of frame descriptors and a list of data buffer descriptors. We use full-sized (1518 byte) data buffers, so there is a one-to-one pairing of frame descriptors to buffer descriptors. The Tx ("command") unit executes a list of commands that look like: Status word Written by the 82586 when the command is done. Command word Command in lower 3 bits, post-command action in upper 3 Link word The address of the next command. Parameters (as needed). Some definitions related to the Command Word are: */#define CMD_EOL 0x8000 /* The last command of the list, stop. */#define CMD_SUSP 0x4000 /* Suspend after doing cmd. */#define CMD_INTR 0x2000 /* Interrupt after doing cmd. */enum commands { CmdNOp = 0, CmdSASetup = 1, CmdConfigure = 2, CmdMulticastList = 3, CmdTx = 4, CmdTDR = 5, CmdDump = 6, CmdDiagnose = 7};/* Information that need to be kept for each board. */struct net_local { struct enet_statistics stats; int last_restart; ushort rx_head; ushort rx_tail; ushort tx_head; ushort tx_cmd_link; ushort tx_reap;};/* Details of the EtherLink16 Implementation The 3c507 is a generic shared-memory i82586 implementation. The host can map 16K, 32K, 48K, or 64K of the 64K memory into 0x0[CD][08]0000, or all 64K into 0xF[02468]0000. *//* Offsets from the base I/O address. */#define SA_DATA 0 /* Station address data, or 3Com signature. */#define MISC_CTRL 6 /* Switch the SA_DATA banks, and bus config bits. */#define RESET_IRQ 10 /* Reset the latched IRQ line. */#define SIGNAL_CA 11 /* Frob the 82586 Channel Attention line. */#define ROM_CONFIG 13#define MEM_CONFIG 14#define IRQ_CONFIG 15/* The ID port is used at boot-time to locate the ethercard. */#define ID_PORT 0x100/* Offsets to registers in the mailbox (SCB). */#define iSCB_STATUS 0x8#define iSCB_CMD 0xA#define iSCB_CBL 0xC /* Command BLock offset. */#define iSCB_RFA 0xE /* Rx Frame Area offset. *//* Since the 3c507 maps the shared memory window so that the last byte is at 82586 address FFFF, the first byte is at 82586 address 0, 16K, 32K, or 48K cooresponding to window sizes of 64K, 48K, 32K and 16K respectively. We can account for this be setting the 'SBC Base' entry in the ISCP table below for all the 16 bit offset addresses, and also adding the 'SCB Base' value to all 24 bit physical addresses (in the SCP table and the TX and RX Buffer Descriptors). -Mark */#define SCB_BASE ((unsigned)64*1024 - (dev->mem_end - dev->mem_start)) /* What follows in 'init_words[]' is the "program" that is downloaded to the 82586 memory. It's mostly tables and command blocks, and starts at the reset address 0xfffff6. This is designed to be similar to the EtherExpress, thus the unusual location of the SCB at 0x0008. Even with the additional "don't care" values, doing it this way takes less program space than initializing the individual tables, and I feel it's much cleaner. The databook is particularly useless for the first two structures, I had to use the Crynwr driver as an example. The memory setup is as follows: */#define CONFIG_CMD 0x0018#define SET_SA_CMD 0x0024#define SA_OFFSET 0x002A#define IDLELOOP 0x30#define TDR_CMD 0x38#define TDR_TIME 0x3C#define DUMP_CMD 0x40#define DIAG_CMD 0x48#define SET_MC_CMD 0x4E#define DUMP_DATA 0x56 /* A 170 byte buffer for dump and Set-MC into. */#define TX_BUF_START 0x0100#define NUM_TX_BUFS 4#define TX_BUF_SIZE (1518+14+20+16) /* packet+header+TBD */#define RX_BUF_START 0x2000#define RX_BUF_SIZE (1518+14+18) /* packet+header+RBD */#define RX_BUF_END (dev->mem_end - dev->mem_start)/* That's it: only 86 bytes to set up the beast, including every extra command available. The 170 byte buffer at DUMP_DATA is shared between the Dump command (called only by the diagnostic program) and the SetMulticastList command. To complete the memory setup you only have to write the station address at SA_OFFSET and create the Tx & Rx buffer lists. The Tx command chain and buffer list is setup as follows: A Tx command table, with the data buffer pointing to... A Tx data buffer descriptor. The packet is in a single buffer, rather than chaining together several smaller buffers. A NoOp command, which initially points to itself, And the packet data. A transmit is done by filling in the Tx command table and data buffer, re-writing the NoOp command, and finally changing the offset of the last command to point to the current Tx command. When the Tx command is finished, it jumps to the NoOp, when it loops until the next Tx command changes the "link offset" in the NoOp. This way the 82586 never has to go through the slow restart sequence. The Rx buffer list is set up in the obvious ring structure. We have enough memory (and low enough interrupt latency) that we can avoid the complicated Rx buffer linked lists by alway associating a full-size Rx data buffer with each Rx data frame. I current use four transmit buffers starting at TX_BUF_START (0x0100), and use the rest of memory, from RX_BUF_START to RX_BUF_END, for Rx buffers. */unsigned short init_words[] = { /* System Configuration Pointer (SCP). */ 0x0000, /* Set bus size to 16 bits. */ 0,0, /* pad words. */ 0x0000,0x0000, /* ISCP phys addr, set in init_82586_mem(). */ /* Intermediate System Configuration Pointer (ISCP). */ 0x0001, /* Status word that's cleared when init is done. */ 0x0008,0,0, /* SCB offset, (skip, skip) */ /* System Control Block (SCB). */ 0,0xf000|RX_START|CUC_START, /* SCB status and cmd. */ CONFIG_CMD, /* Command list pointer, points to Configure. */ RX_BUF_START, /* Rx block list. */ 0,0,0,0, /* Error count: CRC, align, buffer, overrun. */ /* 0x0018: Configure command. Change to put MAC data with packet. */ 0, CmdConfigure, /* Status, command. */ SET_SA_CMD, /* Next command is Set Station Addr. */ 0x0804, /* "4" bytes of config data, 8 byte FIFO. */ 0x2e40, /* Magic values, including MAC data location. */ 0, /* Unused pad word. */ /* 0x0024: Setup station address command. */ 0, CmdSASetup, SET_MC_CMD, /* Next command. */ 0xaa00,0xb000,0x0bad, /* Station address (to be filled in) */ /* 0x0030: NOP, looping back to itself. Point to first Tx buffer to Tx. */ 0, CmdNOp, IDLELOOP, 0 /* pad */, /* 0x0038: A unused Time-Domain Reflectometer command. */ 0, CmdTDR, IDLELOOP, 0, /* 0x0040: An unused Dump State command. */ 0, CmdDump, IDLELOOP, DUMP_DATA, /* 0x0048: An unused Diagnose command. */ 0, CmdDiagnose, IDLELOOP, /* 0x004E: An empty set-multicast-list command. */ 0, CmdMulticastList, IDLELOOP, 0,};/* Index to functions, as function prototypes. */extern int el16_probe(struct device *dev); /* Called from Space.c */static int el16_probe1(struct device *dev, short ioaddr);static int el16_open(struct device *dev);static int el16_send_packet(struct sk_buff *skb, struct device *dev);static void el16_interrupt(int reg_ptr);static void el16_rx(struct device *dev);static int el16_close(struct device *dev);static struct enet_statistics *el16_get_stats(struct device *dev);static void hardware_send_packet(struct device *dev, void *buf, short length);void init_82586_mem(struct device *dev);/* Check for a network adaptor of this type, and return '0' iff one exists. If dev->base_addr == 0, probe all likely locations. If dev->base_addr == 1, always return failure. If dev->base_addr == 2, (detachable devices only) alloate space for the device and return success. */intel16_probe(struct device *dev){ /* Don't probe all settable addresses, 0x[23][0-F]0, just common ones. */ int *port, ports[] = {0x300, 0x320, 0x340, 0x280, 0}; int base_addr = dev->base_addr; ushort lrs_state = 0xff, i; if (base_addr > 0x1ff) /* Check a single specified location. */ return el16_probe1(dev, base_addr); else if (base_addr > 0) return ENXIO; /* Don't probe at all. */ /* Send the ID sequence to the ID_PORT to enable the board. */ outb(0x00, ID_PORT); for(i = 0; i < 255; i++) { outb(lrs_state, ID_PORT); lrs_state <<= 1; if (lrs_state & 0x100) lrs_state ^= 0xe7; } outb(0x00, ID_PORT); for (port = &ports[0]; *port; port++) { short ioaddr = *port;#if 0 /* This is my original code. */ if (inb(ioaddr) == '*' && inb(ioaddr+1) == '3' && inb(ioaddr+2) == 'C' && inb(ioaddr+3) == 'O' && el16_probe1(dev, *port) == 0) return 0;#else /* This is code from jennings@Montrouge.SMR.slb.com, done so that the string can be printed out. */ char res[5]; res[0] = inb(ioaddr); res[1] = inb(ioaddr+1); res[2] = inb(ioaddr+2); res[3] = inb(ioaddr+3); res[4] = 0; if (res[0] == '*' && res[1] == '3' && res[2] == 'C' && res[3] == 'O' && el16_probe1(dev, *port) == 0) return 0;#endif } return ENODEV; /* ENODEV would be more accurate. */}int el16_probe1(struct device *dev, short ioaddr){ int i, irq, irqval; printk("%s: 3c507 at %#x,", dev->name, ioaddr); /* We should make a few more checks here, like the first three octets of the S.A. for the manufactor's code. */ irq = inb(ioaddr + IRQ_CONFIG) & 0x0f; irqval = request_irq(irq, &el16_interrupt); if (irqval) { printk ("unable to get IRQ %d (irqval=%d).\n", irq, irqval); return EAGAIN; } /* We've committed to using the board, and can start filling in *dev. */ snarf_region(ioaddr, 16); dev->base_addr = ioaddr; outb(0x01, ioaddr + MISC_CTRL); for (i = 0; i < 6; i++) { dev->dev_addr[i] = inb(ioaddr + i); printk(" %02x", dev->dev_addr[i]); } if ((dev->mem_start & 0xf) > 0) net_debug = dev->mem_start & 7;#ifdef MEM_BASE dev->mem_start = MEM_BASE; dev->mem_end = dev->mem_start + 0x10000;#else { int base; int size; char mem_config = inb(ioaddr + MEM_CONFIG); if (mem_config & 0x20) { size = 64*1024; base = 0xf00000 + (mem_config & 0x08 ? 0x080000 : ((mem_config & 3) << 17)); } else { size = ((mem_config & 3) + 1) << 14; base = 0x0c0000 + ( (mem_config & 0x18) << 12); } dev->mem_start = base; dev->mem_end = base + size; }#endif dev->if_port = (inb(ioaddr + ROM_CONFIG) & 0x80) ? 1 : 0; dev->irq = inb(ioaddr + IRQ_CONFIG) & 0x0f; printk(", IRQ %d, %sternal xcvr, memory %#lx-%#lx.\n", dev->irq, dev->if_port ? "ex" : "in", dev->mem_start, dev->mem_end-1); if (net_debug) printk(version); /* Initialize the device structure. */ dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL); memset(dev->priv, 0, sizeof(struct net_local)); dev->open = el16_open; dev->stop = el16_close; dev->hard_start_xmit = el16_send_packet; dev->get_stats = el16_get_stats; /* Fill in the fields of the device structure with ethernet-generic values. This should be in a common file instead of per-driver. */ for (i = 0; i < DEV_NUMBUFFS; i++) dev->buffs[i] = NULL; dev->hard_header = eth_header; dev->add_arp = eth_add_arp; dev->queue_xmit = dev_queue_xmit; dev->rebuild_header = eth_rebuild_header; dev->type_trans = eth_type_trans; dev->type = ARPHRD_ETHER; dev->hard_header_len = ETH_HLEN; dev->mtu = 1500; /* eth_mtu */ dev->addr_len = ETH_ALEN; for (i = 0; i < ETH_ALEN; i++) { dev->broadcast[i]=0xff; } /* New-style flags. */ dev->flags = IFF_BROADCAST; dev->family = AF_INET; dev->pa_addr = 0; dev->pa_brdaddr = 0; dev->pa_mask = 0; dev->pa_alen = sizeof(unsigned long); return 0;}static intel16_open(struct device *dev){ irq2dev_map[dev->irq] = dev; /* Initialize the 82586 memory and start it. */ init_82586_mem(dev); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; return 0;}static int
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -