📄 do_learn.m
字号:
function rn=do_learn(rn, dataset, do_cluster, dummy)
% rn=rbf_net_lscr_w.do_learn(rn, dataset, do_cluster, dummy)
%
% global RBFNET_CG_TEMP_DATA ;
% G. Raetsch 1.6.98
% Copyright (c) 1998 GMD Berlin - All rights reserved
% THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE of GMD FIRST Berlin
% The copyright notice above does not evidence any
% actual or intended publication of this work.
% Please see COPYRIGHT.txt for details.
global RBFNET_CG_TEMP_DATA ;
dataset=data_w(dataset) ;
%dataset=thresh(dataset) ;
% if do_cluster, then start clustering
if nargin>2,
if do_cluster,
rn=cluster(rn, dataset) ;
end ;
end ;
mk_tempdata(rn) ;
% make a parameter vector
p=rbfm2p(get_C(rn), get_R(rn)) ;
rn=set_distr(rn, get_sampl_weights(dataset)) ;
if get_max_iter(rn)>0,
% start cg-optimization
[rn, np, fret, iter]=optimize(rn, p, dataset) ;
[C, R]=rbfp2m(np, get_num_cen(rn)) ;
rn=set_C(rn, C) ;
rn=set_R(rn, R) ;
end ;
% just compute the outweights
[rn]=calc_weights(rn, dataset) ;
mk_tempdata(rn) ;
rn=set_distr(rn, []) ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -