📄 knnclass.m
字号:
function y = knnclass(X,model)% KNNCLASS k-Nearest Neighbours classifier.%% Synopsis:% y = knnclass(X,model)%% Description:% The input feature vectors X are classified using the K-NN% rule defined by the input model.% % Input:% X [dim x num_data] Data to be classified.% model [struct] Model of K-NN classfier:% .X [dim x num_prototypes] Prototypes.% .y [1 x num_prototypes] Labels of prototypes.% .K [1x1] Number of used nearest-neighbours.%% Output:% y [1 x num_data] Classified labels of testing data.%% Example:% trn = load('riply_trn');% tst = load('riply_tst');% ypred = knnclass(tst.X,knnrule(trn,5));% cerror( ypred, tst.y )%% See also % KNNRULE.%% (c) Statistical Pattern Recognition Toolbox, (C) 1999-2003,% Written by Vojtech Franc and Vaclav Hlavac,% <a href="http://www.cvut.cz">Czech Technical University Prague</a>,% <a href="http://www.feld.cvut.cz">Faculty of Electrical engineering</a>,% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 19-may-2003, VF% 18-sep-2002, V.FrancX=c2s(X);model=c2s(model);if ~isfield(model,'K'), model.K=1; end;y = knnclass_mex(X,model.X,model.y, model.K);return; % EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -