📄 adaclass.m
字号:
function [y,dfce] = adaclass(X,model)% ADACLASS AdaBoost classifier.%% Synopsis:% [y,dfce] = adaclass(X,model)%% Description:% This function implements the AdaBoost classifier which% its discriminant function is composed of a weighted sum% of binary rules. It is assumed here that the binary rules% respond with label 1 or 2 (not 1 and -1 as used in % AdaBoost literature).%% Input:% X [dim x num_data] Vectors to be classified.% model [struct] AdaBoost classifier:% .rule [cell 1 x T] Binary weak rules.% .Alpha [1 x T] Weights of the weak rules.% .fun = 'adaclass' (optinal).%% Output:% y [1 x num_data] Predicted labels.% dfce [1 x num_data] Values of weighted sum of % weak rules; y(i) = 1 if dfce(i) >= 0 and% y(i) = 2 if dfce(i) < 0.%% Example:% trn_data = load('riply_trn');% tst_data = load('riply_tst');% options.learner = 'weaklearner';% options.max_rules = 50;% options.verb = 1;% model = adaboost(trn_data, options);% ypred1 = adaclass(trn_data.X,model);% ypred2 = adaclass(tst_data.X,model);% trn_err = cerror(ypred1,trn_data.y)% tst_err = cerror(ypred2,tst_data.y)%% See also: % ADABOOST, WEAKLEARNER.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2004, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 25-aug-2004, VF% 11-aug-2004, VFdfce = [];for i=1:length(model.rule), curr_y = feval(model.rule{i}.fun,X,model.rule{i}); curr_y = 3-2*curr_y; if isempty(dfce), dfce = curr_y*model.Alpha(i); else dfce = dfce + curr_y*model.Alpha(i); endendy = zeros(size(dfce));y(find(dfce>=0)) = 1;y(find(dfce<0)) = 2;return;% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -