📄 svm1d.m
字号:
function model=svm1d(data,options)% SVM1D Linear SVM for 1-dimensional input data.%% Synopsis:% model = svm1d( data )% model = svm1d( data, options )%% Description:% model = svm1d( data ) trains the linear SVM binary% classifier for the 1-dimensional training data.% The optimizer is based on a modification of the % Sequential Minimal Optimizer (SMO) [Platt98]. % The trainined classfier is defined as% q(x) = 1 if W*x + b >= 0% = 2 if W*x + b < 0%% model = svm1d( data, options ) use to set up control% parameters for the SVM and the SMO algorithm.%% Input:% data [struct] Input 1-dimensional binary labeled training data:% .X [1 x num_data] Training numbers.% .y [1 x num_data] Labels (1 or 2).% % options [struct] Control parameters:% .C [1x1] SVM regularization constant (default C=inf). % .eps [1x1] Tolerance of KKT-conditions (default eps=0.001).% .tol [1x1] Minimal change of variables (default tol=0.001).%% Output:% model [struct] Found SVM model:% .Alpha [nsv x 1] Weights.% .b [1x1] Bias of decision function.% .sv.X [1 x nsv] Support vectors.% .W [1x1] Explicit value of the normal vector (scalar).%% .nsv [1x1] Number of Support Vectors.% .kercnt [1x1] Number of kernel evaluations (multiplications % in this 1-d linear case) used by the SMO.% .trnerr [1x1] Training classification error.% .margin [1x1] Margin of found classifier.% .cputime [1x1] Used CPU time in seconds.% .options [struct] Copy of used options.%% See also % SMO, SVMCLASS, KFD, KFDQP.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 17-may-2004, VF% 14-may-2004, VF% 15-july-2003, VF% timertic;% Process input arguments % --------------------------[dim,num_data] = size(data.X);if dim ~= 1, error('Inpu data must be one-dimensional.');end if nargin < 2, options = []; else options=c2s(options); endif ~isfield(options,'C'), options.C = inf; endif ~isfield(options,'eps'), options.eps = 0.001; endif ~isfield(options,'tol'), options.tol = 0.001; end% call MEX function%---------------------------[model.Alpha, model.b, model.nsv, model.kercnt, model.trnerr, model.margin]... = smo1d_mex(data.X, data.y, options.C, options.eps, options.tol);% fill up the output structure%---------------------------------inx = find( model.Alpha );model.sv.X = data.X(:,inx);model.sv.y = data.y(inx);model.sv.inx = inx;model.Alpha = model.Alpha(inx);model.Alpha( find(model.sv.y==2)) = -model.Alpha( find(model.sv.y==2 ));model.W = model.sv.X*model.Alpha;options.ker = 'linear';options.arg = 1;model.options = options;model.fun = 'svmclass';model.cputime = toc;return;% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -