📄 fitdemo.m
字号:
%% Optimal Fit of a Non-linear Function
% This is a demonstration of the optimal fitting of a non-linear function to a
% set of data. It uses FMINSEARCH, an implementation of the Nelder-Mead simplex
% (direct search) algorithm, to minimize a nonlinear function of several
% variables.
%
% Copyright 1984-2002 The MathWorks, Inc.
% $Revision: 5.15 $ $Date: 2002/04/02 17:52:33 $
%%
% First, create some sample data and plot it.
% t = (0:.1:2)';
% y = [5.8955 3.5639 2.5173 1.9790 1.8990 1.3938 1.1359 1.0096 1.0343 ...
% 0.8435 0.6856 0.6100 0.5392 0.3946 0.3903 0.5474 0.3459 0.1370 ...
% 0.2211 0.1704 0.2636]';
function [coeff,estimated_lambda] = fitdemo(XData, YData)
if ( size(XData) ~= size(YData) )
error('The two input matrices have to be of the same sizes');
end
plot(XData,YData,'ro'); hold on; h = plot(XData,YData,'b'); hold off;
title('Input data');
if ( size(XData, 1) == 1 )
t = XData';
y = YData';
elseif(size(XData, 2) == 1)
t = XData;
y = YData;
end
%%
% The goal is to fit the following function with two linear parameters and two
% nonlinear parameters to the data:
%
% y = C(1)*exp(-lambda(1)*t) + C(2)*exp(-lambda(2)*t)
%
% To fit this function, we've create a function FITFUN. Given the nonlinear
% parameter (lambda) and the data (t and y), FITFUN calculates the error in the
% fit for this equation and updates the line (h).
% type fitfun
%%
% Make a guess for initial estimate of lambda (start) and invoke FMINSEARCH. It
% minimizes the error returned from FITFUN by adjusting lambda. It returns the
% final value of lambda.
start = [1;0];
options = optimset('TolX',0.1);
estimated_lambda = fminsearch('fitfun',start,options,t,y,h);
%estimated_lambda = [estimated_lambda guidata(gcf)];
coeff = guidata(h);
'estimated_lambda = estimated_lambda';
'coeff = coeff';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -