📄 rfast32.c
字号:
#include <math.h>
#include <libap.h>
#include "rtdspc.h"
#include "filter.h"
/***********************************************************************
RFAST.C - Realtime fast convolution using the FFT
This program performs fast convolution using the FFT. It performs
the convolution required to implement a 35 point FIR filter
(stored in variable fir_lpf35) on an
arbitrary length realtime input. The filter is
a LPF with 40 dB out of band rejection. The 3 dB point is at a
relative frequency of approximately .25*fs.
The filter will switch in and out every 32 blocks (32*FFT_LENGTH).
************************************************************************/
/* FFT length must be a power of 2 */
#define FFT_LENGTH 1024
#define M 10 /* must be log2(FFT_LENGTH) */
#define FILTER_LENGTH 35
float input_save[FILTER_LENGTH];
COMPLEX samp[FFT_LENGTH], filt[FFT_LENGTH];
int bypass;
int count;
void main()
{
register int i, j;
register float tempflt,inv_len;
bypass = 0;
int_disable();
/* copy the filter into complex array and scale by 1/N for inverse FFT */
inv_len = 1.0/FFT_LENGTH;
for(i = 0 ; i < FILTER_LENGTH ; i++) {
filt[i].real = inv_len*fir_lpf35[i];
filt[i].imag = 0.0;
}
for( ; i < FFT_LENGTH ; i++) {
filt[i].real = 0.0;
filt[i].imag = 0.0;
}
/* FFT the zero filled filter impulse response */
ffta(FFT_LENGTH,M,filt);
/* read in one FFT worth of samples to start */
for(i = 0 ; i < FFT_LENGTH-FILTER_LENGTH ; i++) {
samp[i].real = getinput();
samp[i].imag = 0.0;
}
/* save the last FILTER_LENGTH points for next time */
for(j = 0 ; j < FILTER_LENGTH ; j++, i++) {
input_save[j] = samp[i].real = getinput();
samp[i].imag = 0.0;
}
count = 0;
while(1) {
/* do FFT of samples */
ffta(FFT_LENGTH,M,samp);
/* Multiply the two transformed sequences */
/* swap the real and imag outputs to allow a forward FFT instead of
inverse FFT */
if(!bypass) {
for(i = 0 ; i < FFT_LENGTH ; i++) {
tempflt = samp[i].real * filt[i].real
- samp[i].imag * filt[i].imag;
samp[i].real = samp[i].real * filt[i].imag
+ samp[i].imag * filt[i].real;
samp[i].imag = tempflt;
}
}
else {
for(i = 0 ; i < FFT_LENGTH ; i++) {
tempflt = inv_len*samp[i].real;
samp[i].real = inv_len*samp[i].imag;
samp[i].imag = tempflt;
}
}
/* Inverse fft the multiplied sequences */
ffta(FFT_LENGTH,M,samp);
/* Write the result out */
/* because a forward FFT was used for the inverse FFT,
the output is in the imag part */
for(i = FILTER_LENGTH ; i < FFT_LENGTH ; i++) sendout(samp[i].imag);
/* overlap the last FILTER_LENGTH-1 input data points in the next FFT */
for(i = 0; i < FILTER_LENGTH ; i++) {
samp[i].real = input_save[i];
samp[i].imag = 0.0;
}
for( ; i < FFT_LENGTH-FILTER_LENGTH ; i++) {
samp[i].real = getinput();
samp[i].imag = 0.0;
}
/* save the last FILTER_LENGTH points for next time */
for(j = 0 ; j < FILTER_LENGTH ; j++, i++) {
input_save[j] = samp[i].real = getinput();
samp[i].imag = 0.0;
}
/* toggle bypass switch every 32 blocks */
if(((count++) & 31) == 0) bypass ^= 1;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -