⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 g722.c

📁 dsp AD公司ADSP21的代码,里面有FFT FIR IIR EQULIZER G722_21F 等可以在项目中直接应用的代码.此代码的来源是ADI公司自己出版的书籍,此书在美国购得
💻 C
📖 第 1 页 / 共 2 页
字号:
/* split transmitted word from input into ilr and ih */
    ilr = input & 0x3f;
    ih = input >> 6;

/* LOWER SUB_BAND DECODER */

/* filtez: compute predictor output for zero section */
    dec_szl = filtez(dec_del_bpl,dec_del_dltx);

/* filtep: compute predictor output signal for pole section */
    dec_spl = filtep(dec_rlt1,dec_al1,dec_rlt2,dec_al2);

    dec_sl = dec_spl + dec_szl;

/* invqxl: compute quantized difference signal for adaptive predic */
    dec_dlt = ((long)dec_detl*qq4_code4_table[ilr >> 2]) >> 15;

/* invqxl: compute quantized difference signal for decoder output */
    dl = ((long)dec_detl*qq6_code6_table[il]) >> 15;

    rl = dl + dec_sl;

/* logscl: quantizer scale factor adaptation in the lower sub-band */
    dec_nbl = logscl(ilr,dec_nbl);

/* scalel: computes quantizer scale factor in the lower sub band */
    dec_detl = scalel(dec_nbl,8);

/* parrec - add pole predictor output to quantized diff. signal */
/* for partially reconstructed signal */
    dec_plt = dec_dlt + dec_szl;

/* upzero: update zero section predictor coefficients */
    upzero(dec_dlt,dec_del_dltx,dec_del_bpl);

/* uppol2: update second predictor coefficient apl2 and delay it as al2 */
    dec_al2 = uppol2(dec_al1,dec_al2,dec_plt,dec_plt1,dec_plt2);

/* uppol1: update first predictor coef. (pole setion) */
    dec_al1 = uppol1(dec_al1,dec_al2,dec_plt,dec_plt1);

/* recons : compute recontructed signal for adaptive predictor */
    dec_rlt = dec_sl + dec_dlt;

/* done with lower sub band decoder, implement delays for next time */
    dec_rlt2 = dec_rlt1;
    dec_rlt1 = dec_rlt;
    dec_plt2 = dec_plt1;
    dec_plt1 = dec_plt;

/* HIGH SUB-BAND DECODER */

/* filtez: compute predictor output for zero section */
    dec_szh = filtez(dec_del_bph,dec_del_dhx);

/* filtep: compute predictor output signal for pole section */
    dec_sph = filtep(dec_rh1,dec_ah1,dec_rh2,dec_ah2);

/* predic:compute the predictor output value in the higher sub_band decoder */
    dec_sh = dec_sph + dec_szh;

/* invqah: in-place compute the quantized difference signal */
    dec_dh = ((long)dec_deth*qq2_code2_table[ih]) >> 15L ;

/* logsch: update logarithmic quantizer scale factor in hi sub band */
    dec_nbh = logsch(ih,dec_nbh);

/* scalel: compute the quantizer scale factor in the higher sub band */
    dec_deth = scalel(dec_nbh,10);

/* parrec: compute partially recontructed signal */
    dec_ph = dec_dh + dec_szh;

/* upzero: update zero section predictor coefficients */
    upzero(dec_dh,dec_del_dhx,dec_del_bph);

/* uppol2: update second predictor coefficient aph2 and delay it as ah2 */
    dec_ah2 = uppol2(dec_ah1,dec_ah2,dec_ph,dec_ph1,dec_ph2);

/* uppol1: update first predictor coef. (pole setion) */
    dec_ah1 = uppol1(dec_ah1,dec_ah2,dec_ph,dec_ph1);

/* recons : compute recontructed signal for adaptive predictor */
    rh = dec_sh + dec_dh;

/* done with high band decode, implementing delays for next time here */
    dec_rh2 = dec_rh1;
    dec_rh1 = rh;
    dec_ph2 = dec_ph1;
    dec_ph1 = dec_ph;

/* end of higher sub_band decoder */

/* end with receive quadrature mirror filters */   
    xd = rl - rh;
    xs = rl + rh;

/* receive quadrature mirror filters implemented here */
    h_ptr = h;
    ac_ptr = accumc;
    ad_ptr = accumd;
    xa1 = (long)xd * (*h_ptr++);
    xa2 = (long)xs * (*h_ptr++);
/* main multiply accumulate loop for samples and coefficients */
    for(i = 0 ; i < 10 ; i++) {
        xa1 += (long)(*ac_ptr++) * (*h_ptr++);
        xa2 += (long)(*ad_ptr++) * (*h_ptr++);
    }
/* final mult/accumulate */
    xa1 += (long)(*ac_ptr) * (*h_ptr++);
    xa2 += (long)(*ad_ptr) * (*h_ptr++);

/* scale by 2^14 */
    xout1 = xa1 >> 14;
    xout2 = xa2 >> 14;

/* update delay lines */
    ac_ptr1 = ac_ptr - 1;
    ad_ptr1 = ad_ptr - 1;
    for(i = 0 ; i < 10 ; i++) {
        *ac_ptr-- = *ac_ptr1--;
        *ad_ptr-- = *ad_ptr1--;
    }
    *ac_ptr = xd;
    *ad_ptr = xs;
}

/* clear all storage locations */

void reset()
{
    int i;

    detl = dec_detl = 32;   /* reset to min scale factor */
    deth = dec_deth = 8;
    nbl = al1 = al2 = plt1 = plt2 = rlt1 = rlt2 = 0;
    nbh = ah1 = ah2 = ph1 = ph2 = rh1 = rh2 = 0;
    dec_nbl = dec_al1 = dec_al2 = dec_plt1 = dec_plt2 = dec_rlt1 = dec_rlt2 = 0;
    dec_nbh = dec_ah1 = dec_ah2 = dec_ph1 = dec_ph2 = dec_rh1 = dec_rh2 = 0;

    for(i = 0 ; i < 6 ; i++) {
        delay_dltx[i] = 0;
        delay_dhx[i] = 0;
        dec_del_dltx[i] = 0;
        dec_del_dhx[i] = 0;
    }

    for(i = 0 ; i < 6 ; i++) {
        delay_bpl[i] = 0;
        delay_bph[i] = 0;
        dec_del_bpl[i] = 0;
        dec_del_bph[i] = 0;
    }

    for(i = 0 ; i < 23 ; i++) tqmf[i] = 0;

    for(i = 0 ; i < 11 ; i++) {
        accumc[i] = 0;
        accumd[i] = 0;
    }
}

/* filtez - compute predictor output signal (zero section) */
/* input: bpl1-6 and dlt1-6, output: szl */

int filtez(int *bpl,int *dlt)
{
    int i;
    long int zl;
    zl = (long)(*bpl++) * (*dlt++);
    for(i = 1 ; i < 6 ; i++)
        zl += (long)(*bpl++) * (*dlt++);

    return((int)(zl >> 14));   /* x2 here */
}

/* filtep - compute predictor output signal (pole section) */
/* input rlt1-2 and al1-2, output spl */

int filtep(int rlt1,int al1,int rlt2,int al2)
{
    long int pl,pl2;
    pl = 2*rlt1;
    pl = (long)al1*pl;
    pl2 = 2*rlt2;
    pl += (long)al2*pl2;
    return((int)(pl >> 15));
}

/* quantl - quantize the difference signal in the lower sub-band */
int quantl(int el,int detl)
{
    int ril,mil;
    long int wd,decis;

/* abs of difference signal */
    wd = abs(el);
/* determine mil based on decision levels and detl gain */
    for(mil = 0 ; mil < 30 ; mil++) {
        decis = (decis_levl[mil]*(long)detl) >> 15L;
        if(wd <= decis) break;
    }
/* if mil=30 then wd is less than all decision levels */
    if(el >= 0) ril = quant26bt_pos[mil];
    else ril = quant26bt_neg[mil];
    return(ril);
}

/* invqxl is either invqbl or invqal depending on parameters passed */
/* returns dlt, code table is pre-multiplied by 8 */

int invqxl(int il,int detl,int *code_table,int mode)
{
    long int dlt;
    dlt = (long)detl*code_table[il >> (mode-1)];
    return((int)(dlt >> 15));
}

/* logscl - update log quantizer scale factor in lower sub-band */
/* note that nbl is passed and returned */

int logscl(int il,int nbl)
{
    long int wd;
    wd = ((long)nbl * 127L) >> 7L;   /* leak factor 127/128 */
    nbl = (int)wd + wl_code_table[il >> 2];
    if(nbl < 0) nbl = 0;
    if(nbl > 18432) nbl = 18432;
    return(nbl);
}

/* scalel: compute quantizer scale factor in lower or upper sub-band*/

int scalel(int nbl,int shift_constant)
{
    int wd1,wd2,wd3;
    wd1 = (nbl >> 6) & 31;
    wd2 = nbl >> 11;
    wd3 = ilb_table[wd1] >> (shift_constant + 1 - wd2);
    return(wd3 << 3);
}

/* upzero - inputs: dlt, dlti[0-5], bli[0-5], outputs: updated bli[0-5] */
/* also implements delay of bli and update of dlti from dlt */

void upzero(int dlt,int *dlti,int *bli)
{
    int i,wd2,wd3;
/*if dlt is zero, then no sum into bli */
    if(dlt == 0) {
      for(i = 0 ; i < 6 ; i++) {
        bli[i] = (int)((255L*bli[i]) >> 8L); /* leak factor of 255/256 */
      }
    }
    else {
      for(i = 0 ; i < 6 ; i++) {
        if((long)dlt*dlti[i] >= 0) wd2 = 128; else wd2 = -128;
        wd3 = (int)((255L*bli[i]) >> 8L);    /* leak factor of 255/256 */
        bli[i] = wd2 + wd3;
      }
    }
/* implement delay line for dlt */
    dlti[5] = dlti[4];
    dlti[4] = dlti[3];
    dlti[3] = dlti[2];
    dlti[1] = dlti[0];
    dlti[0] = dlt;
}

/* uppol2 - update second predictor coefficient (pole section) */
/* inputs: al1, al2, plt, plt1, plt2. outputs: apl2 */

int uppol2(int al1,int al2,int plt,int plt1,int plt2)
{
    long int wd2,wd4;
    int apl2;
    wd2 = 4L*(long)al1;
    if((long)plt*plt1 >= 0L) wd2 = -wd2;    /* check same sign */
    wd2 = wd2 >> 7;                  /* gain of 1/128 */
    if((long)plt*plt2 >= 0L) {
        wd4 = wd2 + 128;             /* same sign case */
    }
    else {
        wd4 = wd2 - 128;
    }
    apl2 = wd4 + (127L*(long)al2 >> 7L);  /* leak factor of 127/128 */

/* apl2 is limited to +-.75 */
    if(apl2 > 12288) apl2 = 12288;
    if(apl2 < -12288) apl2 = -12288;
    return(apl2);
}

/* uppol1 - update first predictor coefficient (pole section) */
/* inputs: al1, apl2, plt, plt1. outputs: apl1 */

int uppol1(int al1,int apl2,int plt,int plt1)
{
    long int wd2;
    int wd3,apl1;
    wd2 = ((long)al1*255L) >> 8L;   /* leak factor of 255/256 */
    if((long)plt*plt1 >= 0L) {
        apl1 = (int)wd2 + 192;      /* same sign case */
    }
    else {
        apl1 = (int)wd2 - 192;
    }
/* note: wd3= .9375-.75 is always positive */
    wd3 = 15360 - apl2;             /* limit value */
    if(apl1 > wd3) apl1 = wd3;
    if(apl1 < -wd3) apl1 = -wd3;
    return(apl1);
}

/* INVQAH: inverse adaptive quantizer for the higher sub-band */
/* returns dh, code table is pre-multiplied by 8 */

int invqah(int ih,int deth)
{
    long int rdh;
    rdh = ((long)deth*qq2_code2_table[ih]) >> 15L ;
    return((int)(rdh ));
}

/* logsch - update log quantizer scale factor in higher sub-band */
/* note that nbh is passed and returned */

int logsch(int ih,int nbh)
{
    int wd;
    wd = ((long)nbh * 127L) >> 7L;       /* leak factor 127/128 */
    nbh = wd + wh_code_table[ih];
    if(nbh < 0) nbh = 0;
    if(nbh > 22528) nbh = 22528;
    return(nbh);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -