⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fmincon.m

📁 matpower软件下
💻 M
📖 第 1 页 / 共 2 页
字号:
function [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = fmincon(FUN,X,A,B,Aeq,Beq,LB,UB,NONLCON,options,varargin)
%FMINCON finds a constrained minimum of a function of several variables.
%   FMINCON attempts to solve problems of the form:
%       min F(X)  subject to:  A*X  <= B, Aeq*X  = Beq (linear constraints)
%        X                       C(X) <= 0, Ceq(X) = 0   (nonlinear constraints)
%                                LB <= X <= UB            
%                                                           
%   X=FMINCON(FUN,X0,A,B) starts at X0 and finds a minimum X to the function 
%   FUN, subject to the linear inequalities A*X <= B. FUN accepts input X and 
%   returns a scalar function value F evaluated at X. X0 may be a scalar,
%   vector, or matrix. 
%
%   X=FMINCON(FUN,X0,A,B,Aeq,Beq) minimizes FUN subject to the linear equalities
%   Aeq*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no inequalities exist.)
%
%   X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that a solution is found in 
%   the range LB <= X <= UB. Use empty matrices for LB and UB
%   if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below; 
%   set UB(i) = Inf if X(i) is unbounded above.
%
%   X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) subjects the minimization to the 
%   constraints defined in NONLCON. The function NONLCON accepts X and returns 
%   the vectors C and Ceq, representing the nonlinear inequalities and equalities 
%   respectively. FMINCON minimizes FUN such that C(X)<=0 and Ceq(X)=0. 
%   (Set LB=[] and/or UB=[] if no bounds exist.)
%
%   X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) minimizes with the 
%   default optimization parameters replaced by values in the structure
%   OPTIONS, an argument created with the OPTIMSET function. See OPTIMSET
%   for details. Used options are Display, TolX, TolFun, TolCon,
%   DerivativeCheck, Diagnostics, FunValCheck, GradObj, GradConstr,
%   Hessian, MaxFunEvals, MaxIter, DiffMinChange and DiffMaxChange,
%   LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG, TypicalX, Hessian,
%   HessMult, HessPattern. Use the GradObj option to specify that FUN also
%   returns a second output argument G that is the partial derivatives of
%   the function df/dX, at the point X. Use the Hessian option to specify
%   that FUN also returns a third output argument H that is the 2nd
%   partial derivatives of the function (the Hessian) at the point X. The
%   Hessian is only used by the large-scale method, not the line-search
%   method. Use the GradConstr option to specify that NONLCON also returns
%   third and fourth output arguments GC and GCeq, where GC is the partial
%   derivatives of the constraint vector of inequalities C, and GCeq is the
%   partial derivatives of the constraint vector of equalities Ceq. Use
%   OPTIONS = [] as a  place holder if no options are set.
%  
%   [X,FVAL]=FMINCON(FUN,X0,...) returns the value of the objective 
%   function FUN at the solution X.
%
%   [X,FVAL,EXITFLAG]=FMINCON(FUN,X0,...) returns an EXITFLAG that describes the 
%   exit condition of FMINCON. Possible values of EXITFLAG and the corresponding 
%   exit conditions are
%
%     1  First order optimality conditions satisfied to the specified tolerance.
%     2  Change in X less than the specified tolerance.
%     3  Change in the objective function value less than the specified tolerance.
%     4  Magnitude of search direction smaller than the specified tolerance and 
%         constraint violation less than options.TolCon.
%     5  Magnitude of directional derivative less than the specified tolerance
%         and constraint violation less than options.TolCon.
%     0  Maximum number of function evaluations or iterations reached.
%    -1  Optimization terminated by the output function.
%    -2  No feasible point found.
%
%   [X,FVAL,EXITFLAG,OUTPUT]=FMINCON(FUN,X0,...) returns a structure
%   OUTPUT with the number of iterations taken in OUTPUT.iterations, the number
%   of function evaluations in OUTPUT.funcCount, the algorithm used in 
%   OUTPUT.algorithm, the number of CG iterations (if used) in OUTPUT.cgiterations, 
%   the first-order optimality (if used) in OUTPUT.firstorderopt, and the exit
%   message in OUTPUT.message.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=FMINCON(FUN,X0,...) returns the Lagrange multipliers
%   at the solution X: LAMBDA.lower for LB, LAMBDA.upper for UB, LAMBDA.ineqlin is
%   for the linear inequalities, LAMBDA.eqlin is for the linear equalities,
%   LAMBDA.ineqnonlin is for the nonlinear inequalities, and LAMBDA.eqnonlin
%   is for the nonlinear equalities.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD]=FMINCON(FUN,X0,...) returns the value of 
%   the gradient of FUN at the solution X.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN]=FMINCON(FUN,X0,...) returns the 
%   value of the HESSIAN of FUN at the solution X.
%
%   Examples
%     FUN can be specified using @:
%        X = fmincon(@humps,...)
%     In this case, F = humps(X) returns the scalar function value F of the HUMPS function
%     evaluated at X.
%
%     FUN can also be an anonymous function:
%        X = fmincon(@(x) 3*sin(x(1))+exp(x(2)),[1;1],[],[],[],[],[0 0])
%     returns X = [0;0].
%
%   If FUN or NONLCON are parameterized, you can use anonymous functions to capture 
%   the problem-dependent parameters. Suppose you want to minimize the objective
%   given in the function MYFUN, subject to the nonlinear constraint NONLCON, where 
%   these two functions are parameterized by their second argument A and B, respectively.
%   Here MYFUN and MYCON are M-file functions such as
%
%        function f = myfun(x,a)
%        f = x(1)^2 + a*x(2)^2;
%
%   and
%
%        function [c,ceq] = mycon(x,b)
%        c = b/x(1) - x(2);
%        ceq = [];
%
%   To optimize for specific values of A and B, first assign the values to these
%   two parameters. Then create two one-argument anonymous functions that capture 
%   the values of A and B, and call MYFUN and MYCON with two arguments. Finally, 
%   pass these anonymous functions to FMINCON:
%
%        a = 2; b = 1.5; % define parameters first
%        x = fmincon(@(x)myfun(x,a),[1;2],[],[],[],[],[],[],@(x)mycon(x,b))
%
%   See also OPTIMSET, FMINUNC, FMINBND, FMINSEARCH, @, FUNCTION_HANDLE.

%   Copyright 1990-2004 The MathWorks, Inc. 
%   $Revision: 1.31.6.9 $  $Date: 2004/04/16 22:09:58 $

defaultopt = struct('Display','final','LargeScale','on', ...
   'TolX',1e-6,'TolFun',1e-6,'TolCon',1e-6,'DerivativeCheck','off',...
   'Diagnostics','off','FunValCheck','off',...
   'GradObj','off','GradConstr','off',...
   'HessMult',[],...% HessMult [] by default
   'Hessian','off','HessPattern','sparse(ones(numberOfVariables))',...
   'MaxFunEvals','100*numberOfVariables',...
   'MaxSQPIter','10*max(numberOfVariables,numberOfInequalities+numberOfBounds)',...
   'DiffMaxChange',1e-1,'DiffMinChange',1e-8,...
   'PrecondBandWidth',0,'TypicalX','ones(numberOfVariables,1)',...
   'MaxPCGIter','max(1,floor(numberOfVariables/2))', ...
   'TolPCG',0.1,'MaxIter',400,'OutputFcn',[]);
% If just 'defaults' passed in, return the default options in X
if nargin==1 && nargout <= 1 && isequal(FUN,'defaults')
   X = defaultopt;
   return
end

large = 'large-scale';
medium = 'medium-scale'; 

if nargin < 4
  error('optim:fmincon:AtLeastFourInputs','FMINCON requires at least four input arguments.')
end
if nargin < 10, options=[];
   if nargin < 9, NONLCON=[];
      if nargin < 8, UB = [];
         if nargin < 7, LB = [];
            if nargin < 6, Beq=[];
               if nargin < 5, Aeq =[];
               end, end, end, end, end, end
if isempty(NONLCON) && isempty(A) && isempty(Aeq) && isempty(UB) && isempty(LB)
   error('optim:fmincon:ConstrainedProblemsOnly', ...
         'FMINCON is for constrained problems. Use FMINUNC for unconstrained problems.')
end

% Check for non-double inputs
if ~isa(X,'double') || ~isa(A,'double') || ~isa(B,'double') || ~isa(Aeq,'double') || ...
     ~isa(Beq,'double') || ~isa(LB,'double') || ~isa(UB,'double')
   error('optim:fmincon:NonDoubleInput', ...
         'FMINCON only accepts inputs of data type double.')
end

if nargout > 4
   computeLambda = 1;
else 
   computeLambda = 0;
end

caller='constr';
lenVarIn = length(varargin);
XOUT=X(:);
numberOfVariables=length(XOUT);
%check for empty X
if numberOfVariables == 0
   error('optim:fmincon:EmptyX','You must provide a non-empty starting point.');
end

switch optimget(options,'Display',defaultopt,'fast')
case {'off','none'}
   verbosity = 0;
case 'iter'
   verbosity = 2;
case 'final'
   verbosity = 1;
otherwise
   verbosity = 1;
end

% Set to column vectors
B = B(:);
Beq = Beq(:);

[XOUT,l,u,msg] = checkbounds(XOUT,LB,UB,numberOfVariables);
if ~isempty(msg)
   EXITFLAG = -2;
   [FVAL,LAMBDA,GRAD,HESSIAN] = deal([]);
   OUTPUT.iterations = 0;
   OUTPUT.funcCount = 0;
   OUTPUT.cgiterations = [];   
   OUTPUT.firstorderopt = [];
   OUTPUT.algorithm = ''; % Not known at this stage
   OUTPUT.message = msg;
   X(:)=XOUT;
   if verbosity > 0
      disp(msg)
   end
   return
end
lFinite = l(~isinf(l));
uFinite = u(~isinf(u));


meritFunctionType = 0;
mtxmpy = optimget(options,'HessMult',defaultopt,'fast');
if isequal(mtxmpy,'hmult')
   warning('optim:fmincon:HessMultNameClash', ...
           ['Potential function name clash with a Toolbox helper function:\n',...
            ' Use a name besides ''hmult'' for your HessMult function to\n',...
            '  avoid errors or unexpected results.']);
end

diagnostics = isequal(optimget(options,'Diagnostics',defaultopt,'fast'),'on');
funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');
gradflag =  strcmp(optimget(options,'GradObj',defaultopt,'fast'),'on');
hessflag = strcmp(optimget(options,'Hessian',defaultopt,'fast'),'on');
if isempty(NONLCON)
   constflag = 0;
else
   constflag = 1;
end
gradconstflag =  strcmp(optimget(options,'GradConstr',defaultopt,'fast'),'on');
line_search = strcmp(optimget(options,'LargeScale',defaultopt,'fast'),'off'); % 0 means trust-region, 1 means line-search

% Convert to inline function as needed
if ~isempty(FUN)  % will detect empty string, empty matrix, empty cell array
   [funfcn, msg] = optimfcnchk(FUN,'fmincon',length(varargin),funValCheck,gradflag,hessflag);
else
   error('optim:fmincon:InvalidFUN', ...
         ['FUN must be a function handle;\n', ...
          ' or, FUN may be a cell array that contains function handles.']);
end

if constflag % NONLCON is non-empty
   [confcn, msg] = optimfcnchk(NONLCON,'fmincon',length(varargin),funValCheck,gradconstflag,false,1);
else
   confcn{1} = '';
end

[rowAeq,colAeq]=size(Aeq);
% if only l and u then call sfminbx
if ~line_search && isempty(NONLCON) && isempty(A) && isempty(Aeq) && gradflag
   OUTPUT.algorithm = large;
   % if only Aeq beq and Aeq has as many columns as rows, then call sfminle
elseif ~line_search && isempty(NONLCON) && isempty(A) && isempty(lFinite) && isempty(uFinite) && gradflag ...
      && colAeq >= rowAeq
   OUTPUT.algorithm = large;
elseif ~line_search
   warning('optim:fmincon:SwitchingToMediumScale', ...
   ['Large-scale (trust region) method does not currently solve this type of problem,\n' ...
    ' switching to medium-scale (line search).'])
   if isequal(funfcn{1},'fungradhess')
      funfcn{1}='fungrad';
      warning('optim:fmincon:HessianIgnored', ...

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -