📄 strtod.c
字号:
/*FUNCTION <<strtod>>, <<strtof>>---string to double or floatINDEX strtodINDEX _strtod_rINDEX strtofANSI_SYNOPSIS #include <stdlib.h> double strtod(const char *<[str]>, char **<[tail]>); float strtof(const char *<[str]>, char **<[tail]>); double _strtod_r(void *<[reent]>, const char *<[str]>, char **<[tail]>);TRAD_SYNOPSIS #include <stdlib.h> double strtod(<[str]>,<[tail]>) char *<[str]>; char **<[tail]>; float strtof(<[str]>,<[tail]>) char *<[str]>; char **<[tail]>; double _strtod_r(<[reent]>,<[str]>,<[tail]>) char *<[reent]>; char *<[str]>; char **<[tail]>;DESCRIPTION The function <<strtod>> parses the character string <[str]>, producing a substring which can be converted to a double value. The substring converted is the longest initial subsequence of <[str]>, beginning with the first non-whitespace character, that has the format: .[+|-]<[digits]>[.][<[digits]>][(e|E)[+|-]<[digits]>] The substring contains no characters if <[str]> is empty, consists entirely of whitespace, or if the first non-whitespace character is something other than <<+>>, <<->>, <<.>>, or a digit. If the substring is empty, no conversion is done, and the value of <[str]> is stored in <<*<[tail]>>>. Otherwise, the substring is converted, and a pointer to the final string (which will contain at least the terminating null character of <[str]>) is stored in <<*<[tail]>>>. If you want no assignment to <<*<[tail]>>>, pass a null pointer as <[tail]>. <<strtof>> is identical to <<strtod>> except for its return type. This implementation returns the nearest machine number to the input decimal string. Ties are broken by using the IEEE round-even rule. The alternate function <<_strtod_r>> is a reentrant version. The extra argument <[reent]> is a pointer to a reentrancy structure.RETURNS <<strtod>> returns the converted substring value, if any. If no conversion could be performed, 0 is returned. If the correct value is out of the range of representable values, plus or minus <<HUGE_VAL>> is returned, and <<ERANGE>> is stored in errno. If the correct value would cause underflow, 0 is returned and <<ERANGE>> is stored in errno.Supporting OS subroutines required: <<close>>, <<fstat>>, <<isatty>>,<<lseek>>, <<read>>, <<sbrk>>, <<write>>.*//****************************************************************The author of this software is David M. Gay.Copyright (C) 1998-2001 by Lucent TechnologiesAll Rights ReservedPermission to use, copy, modify, and distribute this software andits documentation for any purpose and without fee is herebygranted, provided that the above copyright notice appear in allcopies and that both that the copyright notice and thispermission notice and warranty disclaimer appear in supportingdocumentation, and that the name of Lucent or any of its entitiesnot be used in advertising or publicity pertaining todistribution of the software without specific, written priorpermission.LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANYSPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGESWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHERIN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OFTHIS SOFTWARE.****************************************************************//* Please send bug reports to David M. Gay (dmg at acm dot org, * with " at " changed at "@" and " dot " changed to "."). *//* Original file gdtoa-strtod.c Modified 06-21-2006 by Jeff Johnston to work within newlib. */#include <_ansi.h>#include <errno.h>#include <string.h>#include "mprec.h"#include "gdtoa.h"#include "gd_qnan.h"/* #ifndef NO_FENV_H *//* #include <fenv.h> *//* #endif */#ifdef USE_LOCALE#include "locale.h"#endif#ifdef IEEE_Arith#ifndef NO_IEEE_Scale#define Avoid_Underflow#undef tinytens/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow *//* flag unnecessarily. It leads to a song and dance at the end of strtod. */static _CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 9007199254740992.e-256 };#endif#endif#ifdef Honor_FLT_ROUNDS#define Rounding rounding#undef Check_FLT_ROUNDS#define Check_FLT_ROUNDS#else#define Rounding Flt_Rounds#endif#ifndef NO_HEX_FPstatic void_DEFUN (ULtod, (L, bits, exp, k), __ULong *L _AND __ULong *bits _AND Long exp _AND int k){ switch(k & STRTOG_Retmask) { case STRTOG_NoNumber: case STRTOG_Zero: L[0] = L[1] = 0; break; case STRTOG_Denormal: L[_1] = bits[0]; L[_0] = bits[1]; break; case STRTOG_Normal: case STRTOG_NaNbits: L[_1] = bits[0]; L[_0] = (bits[1] & ~0x100000) | ((exp + 0x3ff + 52) << 20); break; case STRTOG_Infinite: L[_0] = 0x7ff00000; L[_1] = 0; break; case STRTOG_NaN: L[_0] = 0x7fffffff; L[_1] = (__ULong)-1; } if (k & STRTOG_Neg) L[_0] |= 0x80000000L;}#endif /* !NO_HEX_FP */ #ifdef INFNAN_CHECKstatic int_DEFUN (match, (sp, t), _CONST char **sp _AND char *t){ int c, d; _CONST char *s = *sp; while( (d = *t++) !=0) { if ((c = *++s) >= 'A' && c <= 'Z') c += 'a' - 'A'; if (c != d) return 0; } *sp = s + 1; return 1;}#endif /* INFNAN_CHECK */double_DEFUN (_strtod_r, (ptr, s00, se), struct _reent *ptr _AND _CONST char *s00 _AND char **se){#ifdef Avoid_Underflow int scale;#endif int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, decpt, dsign, e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; _CONST char *s, *s0, *s1; double aadj, aadj1, adj, rv, rv0; Long L; __ULong y, z; _Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;#ifdef SET_INEXACT int inexact, oldinexact;#endif#ifdef Honor_FLT_ROUNDS int rounding;#endif delta = bs = bd = NULL; sign = nz0 = nz = decpt = 0; dval(rv) = 0.; for(s = s00;;s++) switch(*s) { case '-': sign = 1; /* no break */ case '+': if (*++s) goto break2; /* no break */ case 0: goto ret0; case '\t': case '\n': case '\v': case '\f': case '\r': case ' ': continue; default: goto break2; } break2: if (*s == '0') {#ifndef NO_HEX_FP { static FPI fpi = { 53, 1-1023-53+1, 2046-1023-53+1, 1, SI }; Long exp; __ULong bits[2]; switch(s[1]) { case 'x': case 'X': {#if defined(FE_DOWNWARD) && defined(FE_TONEAREST) && defined(FE_TOWARDZERO) && defined(FE_UPWARD) FPI fpi1 = fpi; switch(fegetround()) { case FE_TOWARDZERO: fpi1.rounding = 0; break; case FE_UPWARD: fpi1.rounding = 2; break; case FE_DOWNWARD: fpi1.rounding = 3; }#else#define fpi1 fpi#endif switch((i = gethex(ptr, &s, &fpi1, &exp, &bb, sign)) & STRTOG_Retmask) { case STRTOG_NoNumber: s = s00; sign = 0; case STRTOG_Zero: break; default: if (bb) { copybits(bits, fpi.nbits, bb); Bfree(ptr,bb); } ULtod(((U*)&rv)->L, bits, exp, i); }} goto ret; } }#endif nz0 = 1; while(*++s == '0') ; if (!*s) goto ret; } s0 = s; y = z = 0; for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) if (nd < 9) y = 10*y + c - '0'; else if (nd < 16) z = 10*z + c - '0'; nd0 = nd;#ifdef USE_LOCALE if (c == *localeconv()->decimal_point)#else if (c == '.')#endif { decpt = 1; c = *++s; if (!nd) { for(; c == '0'; c = *++s) nz++; if (c > '0' && c <= '9') { s0 = s; nf += nz; nz = 0; goto have_dig; } goto dig_done; } for(; c >= '0' && c <= '9'; c = *++s) { have_dig: nz++; if (c -= '0') { nf += nz; for(i = 1; i < nz; i++) if (nd++ < 9) y *= 10; else if (nd <= DBL_DIG + 1) z *= 10; if (nd++ < 9) y = 10*y + c; else if (nd <= DBL_DIG + 1) z = 10*z + c; nz = 0; } } } dig_done: e = 0; if (c == 'e' || c == 'E') { if (!nd && !nz && !nz0) { goto ret0; } s00 = s; esign = 0; switch(c = *++s) { case '-': esign = 1; case '+': c = *++s; } if (c >= '0' && c <= '9') { while(c == '0') c = *++s; if (c > '0' && c <= '9') { L = c - '0'; s1 = s; while((c = *++s) >= '0' && c <= '9') L = 10*L + c - '0'; if (s - s1 > 8 || L > 19999) /* Avoid confusion from exponents * so large that e might overflow. */ e = 19999; /* safe for 16 bit ints */ else e = (int)L; if (esign) e = -e; } else e = 0; } else s = s00; } if (!nd) { if (!nz && !nz0) {#ifdef INFNAN_CHECK /* Check for Nan and Infinity */ __ULong bits[2]; static FPI fpinan = /* only 52 explicit bits */ { 52, 1-1023-53+1, 2046-1023-53+1, 1, SI }; if (!decpt) switch(c) { case 'i': case 'I': if (match(&s,"nf")) { --s; if (!match(&s,"inity")) ++s; dword0(rv) = 0x7ff00000; dword1(rv) = 0; goto ret; } break; case 'n': case 'N': if (match(&s, "an")) {#ifndef No_Hex_NaN if (*s == '(' /*)*/ && hexnan(&s, &fpinan, bits) == STRTOG_NaNbits) { dword0(rv) = 0x7ff00000 | bits[1]; dword1(rv) = bits[0]; } else {#endif dword0(rv) = NAN_WORD0; dword1(rv) = NAN_WORD1;#ifndef No_Hex_NaN }#endif goto ret; } }#endif /* INFNAN_CHECK */ ret0: s = s00; sign = 0; } goto ret; } e1 = e -= nf; /* Now we have nd0 digits, starting at s0, followed by a * decimal point, followed by nd-nd0 digits. The number we're * after is the integer represented by those digits times * 10**e */ if (!nd0) nd0 = nd; k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; dval(rv) = y; if (k > 9) {#ifdef SET_INEXACT if (k > DBL_DIG) oldinexact = get_inexact();#endif dval(rv) = tens[k - 9] * dval(rv) + z; } bd0 = 0; if (nd <= DBL_DIG#ifndef RND_PRODQUOT#ifndef Honor_FLT_ROUNDS && Flt_Rounds == 1#endif#endif ) { if (!e) goto ret; if (e > 0) { if (e <= Ten_pmax) {#ifdef VAX goto vax_ovfl_check;#else#ifdef Honor_FLT_ROUNDS /* round correctly FLT_ROUNDS = 2 or 3 */ if (sign) { rv = -rv; sign = 0; }#endif /* rv = */ rounded_product(dval(rv), tens[e]); goto ret;#endif } i = DBL_DIG - nd; if (e <= Ten_pmax + i) { /* A fancier test would sometimes let us do * this for larger i values. */#ifdef Honor_FLT_ROUNDS /* round correctly FLT_ROUNDS = 2 or 3 */ if (sign) { rv = -rv; sign = 0; }#endif e -= i; dval(rv) *= tens[i];#ifdef VAX /* VAX exponent range is so narrow we must * worry about overflow here... */ vax_ovfl_check: dword0(rv) -= P*Exp_msk1; /* rv = */ rounded_product(dval(rv), tens[e]); if ((dword0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) goto ovfl; dword0(rv) += P*Exp_msk1;#else /* rv = */ rounded_product(dval(rv), tens[e]);#endif goto ret; } }#ifndef Inaccurate_Divide else if (e >= -Ten_pmax) {#ifdef Honor_FLT_ROUNDS /* round correctly FLT_ROUNDS = 2 or 3 */ if (sign) { rv = -rv; sign = 0; }#endif /* rv = */ rounded_quotient(dval(rv), tens[-e]); goto ret; }#endif } e1 += nd - k;#ifdef IEEE_Arith#ifdef SET_INEXACT inexact = 1; if (k <= DBL_DIG) oldinexact = get_inexact();#endif#ifdef Avoid_Underflow scale = 0;#endif#ifdef Honor_FLT_ROUNDS if ((rounding = Flt_Rounds) >= 2) { if (sign) rounding = rounding == 2 ? 0 : 2; else if (rounding != 2) rounding = 0; }#endif#endif /*IEEE_Arith*/ /* Get starting approximation = rv * 10**e1 */ if (e1 > 0) { if ( (i = e1 & 15) !=0) dval(rv) *= tens[i]; if (e1 &= ~15) { if (e1 > DBL_MAX_10_EXP) { ovfl:#ifndef NO_ERRNO ptr->_errno = ERANGE;#endif /* Can't trust HUGE_VAL */#ifdef IEEE_Arith#ifdef Honor_FLT_ROUNDS switch(rounding) { case 0: /* toward 0 */ case 3: /* toward -infinity */ dword0(rv) = Big0;#ifndef _DOUBLE_IS_32BITS dword1(rv) = Big1;#endif /*!_DOUBLE_IS_32BITS*/ break; default: dword0(rv) = Exp_mask;#ifndef _DOUBLE_IS_32BITS dword1(rv) = 0;#endif /*!_DOUBLE_IS_32BITS*/ }#else /*Honor_FLT_ROUNDS*/ dword0(rv) = Exp_mask;#ifndef _DOUBLE_IS_32BITS dword1(rv) = 0;#endif /*!_DOUBLE_IS_32BITS*/#endif /*Honor_FLT_ROUNDS*/#ifdef SET_INEXACT /* set overflow bit */ dval(rv0) = 1e300; dval(rv0) *= dval(rv0);#endif#else /*IEEE_Arith*/ dword0(rv) = Big0;#ifndef _DOUBLE_IS_32BITS dword1(rv) = Big1;#endif /*!_DOUBLE_IS_32BITS*/#endif /*IEEE_Arith*/ if (bd0) goto retfree; goto ret; } e1 >>= 4; for(j = 0; e1 > 1; j++, e1 >>= 1) if (e1 & 1) dval(rv) *= bigtens[j]; /* The last multiplication could overflow. */ dword0(rv) -= P*Exp_msk1; dval(rv) *= bigtens[j];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -