⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sysdep.h

📁 KPIT GNU Tools is a set of GNU development tools for Renesas microcontrollers.
💻 H
字号:
/* Copyright (C) 1992, 93, 95, 96, 97, 98, 99, 00 Free Software Foundation, Inc.   This file is part of the GNU C Library.   Contributed by Ulrich Drepper, <drepper@gnu.org>, August 1995.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  */#ifndef _LINUX_I386_SYSDEP_H#define _LINUX_I386_SYSDEP_H 1#include "i386-sysdep.h"/* For Linux we can use the system call table in the header file	/usr/include/asm/unistd.h   of the kernel.  But these symbols do not follow the SYS_* syntax   so we have to redefine the `SYS_ify' macro here.  */#undef SYS_ify#define SYS_ify(syscall_name)	__NR_##syscall_name/* ELF-like local names start with `.L'.  */#undef L#define L(name)	.L##name#ifdef __ASSEMBLER__/* Linux uses a negative return value to indicate syscall errors,   unlike most Unices, which use the condition codes' carry flag.   Since version 2.1 the return value of a system call might be   negative even if the call succeeded.  E.g., the `lseek' system call   might return a large offset.  Therefore we must not anymore test   for < 0, but test for a real error by making sure the value in %eax   is a real error number.  Linus said he will make sure the no syscall   returns a value in -1 .. -4095 as a valid result so we can savely   test with -4095.  *//* We don't want the label for the error handle to be global when we define   it here.  */#ifdef PIC# define SYSCALL_ERROR_LABEL 0f#else# define SYSCALL_ERROR_LABEL syscall_error#endif#undef	PSEUDO#define	PSEUDO(name, syscall_name, args)				      \  .text;								      \  ENTRY (name)								      \    DO_CALL (args, syscall_name);					      \    cmpl $-4095, %eax;							      \    jae SYSCALL_ERROR_LABEL;						      \  L(pseudo_end):#undef	PSEUDO_END#define	PSEUDO_END(name)						      \  SYSCALL_ERROR_HANDLER							      \  END (name)#ifndef PIC#define SYSCALL_ERROR_HANDLER	/* Nothing here; code in sysdep.S is used.  */#else/* Store (- %eax) into errno through the GOT.  */#ifdef _LIBC_REENTRANT#define SYSCALL_ERROR_HANDLER						      \0:pushl %ebx;								      \  call 1f;								      \1:popl %ebx;								      \  xorl %edx, %edx;							      \  addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ebx;				      \  subl %eax, %edx;							      \  pushl %edx;								      \  PUSH_ERRNO_LOCATION_RETURN;						      \  call BP_SYM (__errno_location)@PLT;					      \  POP_ERRNO_LOCATION_RETURN;						      \  popl %ecx;								      \  popl %ebx;								      \  movl %ecx, (%eax);							      \  orl $-1, %eax;							      \  jmp L(pseudo_end);/* A quick note: it is assumed that the call to `__errno_location' does   not modify the stack!  */#else#define SYSCALL_ERROR_HANDLER						      \0:call 1f;								      \1:popl %ecx;								      \  xorl %edx, %edx;							      \  addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx;				      \  subl %eax, %edx;							      \  movl errno@GOT(%ecx), %ecx;						      \  movl %edx, (%ecx);							      \  orl $-1, %eax;							      \  jmp L(pseudo_end);#endif	/* _LIBC_REENTRANT */#endif	/* PIC *//* Linux takes system call arguments in registers:	syscall number	%eax	     call-clobbered	arg 1		%ebx	     call-saved	arg 2		%ecx	     call-clobbered	arg 3		%edx	     call-clobbered	arg 4		%esi	     call-saved	arg 5		%edi	     call-saved   The stack layout upon entering the function is:	20(%esp)	Arg# 5	16(%esp)	Arg# 4	12(%esp)	Arg# 3	 8(%esp)	Arg# 2	 4(%esp)	Arg# 1	  (%esp)	Return address   (Of course a function with say 3 arguments does not have entries for   arguments 4 and 5.)   The following code tries hard to be optimal.  A general assumption   (which is true according to the data books I have) is that	2 * xchg	is more expensive than	pushl + movl + popl   Beside this a neat trick is used.  The calling conventions for Linux   tell that among the registers used for parameters %ecx and %edx need   not be saved.  Beside this we may clobber this registers even when   they are not used for parameter passing.   As a result one can see below that we save the content of the %ebx   register in the %edx register when we have less than 3 arguments   (2 * movl is less expensive than pushl + popl).   Second unlike for the other registers we don't save the content of   %ecx and %edx when we have more than 1 and 2 registers resp.   The code below might look a bit long but we have to take care for   the pipelined processors (i586).  Here the `pushl' and `popl'   instructions are marked as NP (not pairable) but the exception is   two consecutive of these instruction.  This gives no penalty on   other processors though.  */#undef	DO_CALL#define DO_CALL(args, syscall_name)			      		      \    PUSHARGS_##args							      \    DOARGS_##args							      \    movl $SYS_ify (syscall_name), %eax;					      \    int $0x80								      \    POPARGS_##args#define PUSHARGS_0	/* No arguments to push.  */#define	DOARGS_0	/* No arguments to frob.  */#define	POPARGS_0	/* No arguments to pop.  */#define	_PUSHARGS_0	/* No arguments to push.  */#define _DOARGS_0(n)	/* No arguments to frob.  */#define	_POPARGS_0	/* No arguments to pop.  */#define PUSHARGS_1	movl %ebx, %edx; PUSHARGS_0#define	DOARGS_1	_DOARGS_1 (4)#define	POPARGS_1	POPARGS_0; movl %edx, %ebx#define	_PUSHARGS_1	pushl %ebx; _PUSHARGS_0#define _DOARGS_1(n)	movl n(%esp), %ebx; _DOARGS_0(n-4)#define	_POPARGS_1	_POPARGS_0; popl %ebx#define PUSHARGS_2	PUSHARGS_1#define	DOARGS_2	_DOARGS_2 (8)#define	POPARGS_2	POPARGS_1#define _PUSHARGS_2	_PUSHARGS_1#define	_DOARGS_2(n)	movl n(%esp), %ecx; _DOARGS_1 (n-4)#define	_POPARGS_2	_POPARGS_1#define PUSHARGS_3	_PUSHARGS_2#define DOARGS_3	_DOARGS_3 (16)#define POPARGS_3	_POPARGS_3#define _PUSHARGS_3	_PUSHARGS_2#define _DOARGS_3(n)	movl n(%esp), %edx; _DOARGS_2 (n-4)#define _POPARGS_3	_POPARGS_2#define PUSHARGS_4	_PUSHARGS_4#define DOARGS_4	_DOARGS_4 (24)#define POPARGS_4	_POPARGS_4#define _PUSHARGS_4	pushl %esi; _PUSHARGS_3#define _DOARGS_4(n)	movl n(%esp), %esi; _DOARGS_3 (n-4)#define _POPARGS_4	_POPARGS_3; popl %esi#define PUSHARGS_5	_PUSHARGS_5#define DOARGS_5	_DOARGS_5 (32)#define POPARGS_5	_POPARGS_5#define _PUSHARGS_5	pushl %edi; _PUSHARGS_4#define _DOARGS_5(n)	movl n(%esp), %edi; _DOARGS_4 (n-4)#define _POPARGS_5	_POPARGS_4; popl %edi#else	/* !__ASSEMBLER__ *//* We need some help from the assembler to generate optimal code.  We   define some macros here which later will be used.  */asm (".L__X'%ebx = 1\n\t"     ".L__X'%ecx = 2\n\t"     ".L__X'%edx = 2\n\t"     ".L__X'%eax = 3\n\t"     ".L__X'%esi = 3\n\t"     ".L__X'%edi = 3\n\t"     ".L__X'%ebp = 3\n\t"     ".L__X'%esp = 3\n\t"     ".macro bpushl name reg\n\t"     ".if 1 - \\name\n\t"     ".if 2 - \\name\n\t"     "pushl %ebx\n\t"     ".else\n\t"     "xchgl \\reg, %ebx\n\t"     ".endif\n\t"     ".endif\n\t"     ".endm\n\t"     ".macro bpopl name reg\n\t"     ".if 1 - \\name\n\t"     ".if 2 - \\name\n\t"     "popl %ebx\n\t"     ".else\n\t"     "xchgl \\reg, %ebx\n\t"     ".endif\n\t"     ".endif\n\t"     ".endm\n\t"     ".macro bmovl name reg\n\t"     ".if 1 - \\name\n\t"     ".if 2 - \\name\n\t"     "movl \\reg, %ebx\n\t"     ".endif\n\t"     ".endif\n\t"     ".endm\n\t");/* Define a macro which expands inline into the wrapper code for a system   call.  */#undef INLINE_SYSCALL#define INLINE_SYSCALL(name, nr, args...) \  ({									      \    unsigned int resultvar;						      \    asm volatile (							      \    LOADARGS_##nr							      \    "movl %1, %%eax\n\t"						      \    "int $0x80\n\t"							      \    RESTOREARGS_##nr							      \    : "=a" (resultvar)							      \    : "i" (__NR_##name) ASMFMT_##nr(args) : "memory", "cc");		      \    if (resultvar >= 0xfffff001)					      \      {									      \	__set_errno (-resultvar);					      \	resultvar = 0xffffffff;						      \      }									      \    (int) resultvar; })#define LOADARGS_0#define LOADARGS_1 \    "bpushl .L__X'%k2, %k2\n\t"						      \    "bmovl .L__X'%k2, %k2\n\t"#define LOADARGS_2	LOADARGS_1#define LOADARGS_3	LOADARGS_1#define LOADARGS_4	LOADARGS_1#define LOADARGS_5	LOADARGS_1#define RESTOREARGS_0#define RESTOREARGS_1 \    "bpopl .L__X'%k2, %k2\n\t"#define RESTOREARGS_2	RESTOREARGS_1#define RESTOREARGS_3	RESTOREARGS_1#define RESTOREARGS_4	RESTOREARGS_1#define RESTOREARGS_5	RESTOREARGS_1#define ASMFMT_0()#define ASMFMT_1(arg1) \	, "acdSD" (arg1)#define ASMFMT_2(arg1, arg2) \	, "adCD" (arg1), "c" (arg2)#define ASMFMT_3(arg1, arg2, arg3) \	, "aCD" (arg1), "c" (arg2), "d" (arg3)#define ASMFMT_4(arg1, arg2, arg3, arg4) \	, "aD" (arg1), "c" (arg2), "d" (arg3), "S" (arg4)#define ASMFMT_5(arg1, arg2, arg3, arg4, arg5) \	, "a" (arg1), "c" (arg2), "d" (arg3), "S" (arg4), "D" (arg5)#endif	/* __ASSEMBLER__ */#endif /* linux/i386/sysdep.h */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -