⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_atan2.cpp

📁 这是整套横扫千军3D版游戏的源码
💻 CPP
📖 第 1 页 / 共 2 页
字号:
/* See the import.pl script for potential modifications */
/*
 * IBM Accurate Mathematical Library
 * written by International Business Machines Corp.
 * Copyright (C) 2001 Free Software Foundation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
/************************************************************************/
/*  MODULE_NAME: atnat2.c                                               */
/*                                                                      */
/*  FUNCTIONS: uatan2                                                   */
/*             atan2Mp                                                  */
/*             signArctan2                                              */
/*             normalized                                               */
/*                                                                      */
/*  FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h                */
/*                mpatan.c mpatan2.c mpsqrt.c                           */
/*                uatan.tbl                                             */
/*                                                                      */
/* An ultimate atan2() routine. Given two IEEE Double machine numbers y,*/
/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/
/*                                                                      */
/* Assumption: Machine arithmetic operations are performed in           */
/* round to nearest mode of IEEE 754 standard.                          */
/*                                                                      */
/************************************************************************/

#include "dla.h"
#include "mpa.h"
#include "MathLib.h"
#include "uatan.tbl"
#include "atnat2.h"
#include "math_private.h"

/************************************************************************/
/* An ultimate atan2 routine. Given two IEEE Double machine numbers y,x */
/* it computes the correctly rounded (to nearest) value of atan2(y,x).  */
/* Assumption: Machine arithmetic operations are performed in           */
/* round to nearest mode of IEEE 754 standard.                          */
/************************************************************************/
namespace streflop_libm {
static Double atan2Mp(Double ,Double ,const int[]);
static Double signArctan2(Double ,Double);
static Double normalized(Double ,Double,Double ,Double);
void __mpatan2(mp_no *,mp_no *,mp_no *,int);

Double __ieee754_atan2(Double y,Double x) {

  int i,de,ux,dx,uy,dy;
#if 0
  int p;
#endif
  static const int pr[MM]={6,8,10,20,32};
  Double ax,ay,u,du,u9,ua,v,vv,dv,t1,t2,t3,t4,t5,t6,t7,t8,
         z,zz,cor,s1,ss1,s2,ss2;
#if 0
  Double z1,z2;
#endif
  number num;
#if 0
  mp_no mperr,mpt1,mpx,mpy,mpz,mpz1,mpz2;
#endif

  static const int ep= 59768832,   /*  57*16**5   */
                   em=-59768832;   /* -57*16**5   */

  /* x=NaN or y=NaN */
  num.d() = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];
  if   ((ux&0x7ff00000)    ==0x7ff00000) {
    if (((ux&0x000fffff)|dx)!=0x00000000) return x+x; }
  num.d() = y;  uy = num.i[HIGH_HALF];  dy = num.i[LOW_HALF];
  if   ((uy&0x7ff00000)    ==0x7ff00000) {
    if (((uy&0x000fffff)|dy)!=0x00000000) return y+y; }

  /* y=+-0 */
  if      (uy==0x00000000) {
    if    (dy==0x00000000) {
      if  ((ux&0x80000000)==0x00000000)  return ZERO;
      else                               return opi.d(); } }
  else if (uy==0x80000000) {
    if    (dy==0x00000000) {
      if  ((ux&0x80000000)==0x00000000)  return MZERO;
      else                               return mopi.d();} }

  /* x=+-0 */
  if (x==ZERO) {
    if ((uy&0x80000000)==0x00000000)     return hpi.d();
    else                                 return mhpi.d(); }

  /* x=+-INF */
  if          (ux==0x7ff00000) {
    if        (dx==0x00000000) {
      if      (uy==0x7ff00000) {
        if    (dy==0x00000000)  return qpi.d(); }
      else if (uy==0xfff00000) {
        if    (dy==0x00000000)  return mqpi.d(); }
      else {
        if    ((uy&0x80000000)==0x00000000)  return ZERO;
        else                                 return MZERO; }
    }
  }
  else if     (ux==0xfff00000) {
    if        (dx==0x00000000) {
      if      (uy==0x7ff00000) {
        if    (dy==0x00000000)  return tqpi.d(); }
      else if (uy==0xfff00000) {
        if    (dy==0x00000000)  return mtqpi.d(); }
      else                     {
        if    ((uy&0x80000000)==0x00000000)  return opi.d();
        else                                 return mopi.d(); }
    }
  }

  /* y=+-INF */
  if      (uy==0x7ff00000) {
    if    (dy==0x00000000)  return hpi.d(); }
  else if (uy==0xfff00000) {
    if    (dy==0x00000000)  return mhpi.d(); }

  /* either x/y or y/x is very close to zero */
  ax = (x<ZERO) ? -x : x;    ay = (y<ZERO) ? -y : y;
  de = (uy & 0x7ff00000) - (ux & 0x7ff00000);
  if      (de>=ep)  { return ((y>ZERO) ? hpi.d() : mhpi.d()); }
  else if (de<=em)  {
    if    (x>ZERO)  {
      if  ((z=ay/ax)<TWOM1022)  return normalized(ax,ay,y,z);
      else                      return signArctan2(y,z); }
    else            { return ((y>ZERO) ? opi.d() : mopi.d()); } }

  /* if either x or y is extremely close to zero, scale abs(x), abs(y). */
  if (ax<twom500.d() || ay<twom500.d()) { ax*=two500.d();  ay*=two500.d(); }

  /* x,y which are neither special nor extreme */
  if (ay<ax) {
    u=ay/ax;
    EMULV(ax,u,v,vv,t1,t2,t3,t4,t5)
    du=((ay-v)-vv)/ax; }
  else {
    u=ax/ay;
    EMULV(ay,u,v,vv,t1,t2,t3,t4,t5)
    du=((ax-v)-vv)/ay; }

  if (x>ZERO) {

    /* (i)   x>0, abs(y)< abs(x):  atan(ay/ax) */
    if (ay<ax) {
      if (u<inv16.d()) {
        v=u*u;  zz=du+u*v*(d3.d()+v*(d5.d()+v*(d7.d()+v*(d9.d()+v*(d11.d()+v*d13.d())))));
        if ((z=u+(zz-u1.d()*u)) == u+(zz+u1.d()*u))  return signArctan2(y,z);

        MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
        s1=v*(f11.d()+v*(f13.d()+v*(f15.d()+v*(f17.d()+v*f19.d()))));
        ADD2(f9.d(),ff9.d(),s1,ZERO,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
        ADD2(f7.d(),ff7.d(),s1,ss1,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
        ADD2(f5.d(),ff5.d(),s1,ss1,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
        ADD2(f3.d(),ff3.d(),s1,ss1,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
        MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
        ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
        if ((z=s1+(ss1-u5.d()*s1)) == s1+(ss1+u5.d()*s1))  return signArctan2(y,z);
        return atan2Mp(x,y,pr);
      }
      else {
        i=(TWO52+TWO8*u)-TWO52;  i-=16;
        t3=u-cij[i][0].d();
        EADD(t3,du,v,dv)
        t1=cij[i][1].d();  t2=cij[i][2].d();
        zz=v*t2+(dv*t2+v*v*(cij[i][3].d()+v*(cij[i][4].d()+
                         v*(cij[i][5].d()+v* cij[i][6].d()))));
        if (i<112) {
          if (i<48)  u9=u91.d();    /* u < 1/4        */
          else       u9=u92.d(); }  /* 1/4 <= u < 1/2 */
        else {
          if (i<176) u9=u93.d();    /* 1/2 <= u < 3/4 */
          else       u9=u94.d(); }  /* 3/4 <= u <= 1  */
        if ((z=t1+(zz-u9*t1)) == t1+(zz+u9*t1))  return signArctan2(y,z);

        t1=u-hij[i][0].d();
        EADD(t1,du,v,vv)
        s1=v*(hij[i][11].d()+v*(hij[i][12].d()+v*(hij[i][13].d()+
           v*(hij[i][14].d()+v* hij[i][15].d()))));
        ADD2(hij[i][9].d(),hij[i][10].d(),s1,ZERO,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
        ADD2(hij[i][7].d(),hij[i][8].d(),s1,ss1,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
        ADD2(hij[i][5].d(),hij[i][6].d(),s1,ss1,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
        ADD2(hij[i][3].d(),hij[i][4].d(),s1,ss1,s2,ss2,t1,t2)
        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -