📄 e_asin.cpp
字号:
/* See the import.pl script for potential modifications */
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/******************************************************************/
/* MODULE_NAME:uasncs.c */
/* */
/* FUNCTIONS: uasin */
/* uacos */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
/* doasin.c sincos32.c dosincos.c mpa.c */
/* sincos.tbl asincos.tbl powtwo.tbl root.tbl */
/* */
/* Ultimate asin/acos routines. Given an IEEE Double machine */
/* number x, compute the correctly rounded value of */
/* arcsin(x)or arccos(x) according to the function called. */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/******************************************************************/
#include "endian.h"
#include "mydefs.h"
#include "asincos.tbl"
#include "root.tbl"
#include "powtwo.tbl"
#include "MathLib.h"
#include "uasncs.h"
#include "math_private.h"
void __doasin(Double x, Double dx, Double w[]);
void __dubsin(Double x, Double dx, Double v[]);
void __dubcos(Double x, Double dx, Double v[]);
void __docos(Double x, Double dx, Double v[]);
Double __sin32(Double x, Double res, Double res1);
Double __cos32(Double x, Double res, Double res1);
/***************************************************************************/
/* An ultimate asin routine. Given an IEEE Double machine number x */
/* it computes the correctly rounded (to nearest) value of arcsin(x) */
/***************************************************************************/
namespace streflop_libm {
Double __ieee754_asin(Double x){
Double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2];
mynumber u,v;
int4 k,m,n;
#if 0
int4 nn;
#endif
u.x() = x;
m = u.i[HIGH_HALF];
k = 0x7fffffff&m; /* no sign */
if (k < 0x3e500000) return x; /* for x->0 => sin(x)=x */
/*----------------------2^-26 <= |x| < 2^ -3 -----------------*/
else
if (k < 0x3fc00000) {
x2 = x*x;
t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
res = x+t; /* res=arcsin(x) according to Taylor series */
cor = (x-res)+t;
if (res == res+1.025*cor) return res;
else {
x1 = x+big;
xx = x*x;
x1 -= big;
x2 = x - x1;
p = x1*x1*x1;
s1 = a1.x()*p;
s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
((a1.x()+a2.x())*x2*x2+ 0.5*x1*x)*x2) + a2.x()*p;
res1 = x+s1;
s2 = ((x-res1)+s1)+s2;
res = res1+s2;
cor = (res1-res)+s2;
if (res == res+1.00014*cor) return res;
else {
__doasin(x,0,w);
if (w[0]==(w[0]+1.00000001*w[1])) return w[0];
else {
y=ABS(x);
res=ABS(w[0]);
res1=ABS(w[0]+1.1*w[1]);
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
}
}
}
}
/*---------------------0.125 <= |x| < 0.5 -----------------------------*/
else if (k < 0x3fe00000) {
if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
else n = 11*((k&0x000fffff)>>14)+352;
if (m>0) xx = x - asncs.x(n);
else xx = -x - asncs.x(n);
t = asncs.x(n+1)*xx;
p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+xx*(asncs.x(n+5)
+xx*asncs.x(n+6)))))+asncs.x(n+7);
t+=p;
res =asncs.x(n+8) +t;
cor = (asncs.x(n+8)-res)+t;
if (res == res+1.05*cor) return (m>0)?res:-res;
else {
r=asncs.x(n+8)+xx*asncs.x(n+9);
t=((asncs.x(n+8)-r)+xx*asncs.x(n+9))+(p+xx*asncs.x(n+10));
res = r+t;
cor = (r-res)+t;
if (res == res+1.0005*cor) return (m>0)?res:-res;
else {
res1=res+1.1*cor;
z=0.5*(res1-res);
__dubsin(res,z,w);
z=(w[0]-ABS(x))+w[1];
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
else {
y=ABS(x);
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
}
}
}
} /* else if (k < 0x3fe00000) */
/*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/
else
if (k < 0x3fe80000) {
n = 1056+((k&0x000fe000)>>11)*3;
if (m>0) xx = x - asncs.x(n);
else xx = -x - asncs.x(n);
t = asncs.x(n+1)*xx;
p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+xx*(asncs.x(n+5)
+xx*(asncs.x(n+6)+xx*asncs.x(n+7))))))+asncs.x(n+8);
t+=p;
res =asncs.x(n+9) +t;
cor = (asncs.x(n+9)-res)+t;
if (res == res+1.01*cor) return (m>0)?res:-res;
else {
r=asncs.x(n+9)+xx*asncs.x(n+10);
t=((asncs.x(n+9)-r)+xx*asncs.x(n+10))+(p+xx*asncs.x(n+11));
res = r+t;
cor = (r-res)+t;
if (res == res+1.0005*cor) return (m>0)?res:-res;
else {
res1=res+1.1*cor;
z=0.5*(res1-res);
__dubsin(res,z,w);
z=(w[0]-ABS(x))+w[1];
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
else {
y=ABS(x);
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
}
}
}
} /* else if (k < 0x3fe80000) */
/*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/
else
if (k < 0x3fed8000) {
n = 992+((k&0x000fe000)>>13)*13;
if (m>0) xx = x - asncs.x(n);
else xx = -x - asncs.x(n);
t = asncs.x(n+1)*xx;
p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+xx*(asncs.x(n+5)
+xx*(asncs.x(n+6)+xx*(asncs.x(n+7)+xx*asncs.x(n+8)))))))+asncs.x(n+9);
t+=p;
res =asncs.x(n+10) +t;
cor = (asncs.x(n+10)-res)+t;
if (res == res+1.01*cor) return (m>0)?res:-res;
else {
r=asncs.x(n+10)+xx*asncs.x(n+11);
t=((asncs.x(n+10)-r)+xx*asncs.x(n+11))+(p+xx*asncs.x(n+12));
res = r+t;
cor = (r-res)+t;
if (res == res+1.0008*cor) return (m>0)?res:-res;
else {
res1=res+1.1*cor;
z=0.5*(res1-res);
y=hp0.x()-res;
z=((hp0.x()-y)-res)+(hp1.x()-z);
__dubcos(y,z,w);
z=(w[0]-ABS(x))+w[1];
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
else {
y=ABS(x);
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
}
}
}
} /* else if (k < 0x3fed8000) */
/*-------------------0.921875 <= |x| < 0.953125 ------------------------*/
else
if (k < 0x3fee8000) {
n = 884+((k&0x000fe000)>>13)*14;
if (m>0) xx = x - asncs.x(n);
else xx = -x - asncs.x(n);
t = asncs.x(n+1)*xx;
p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+
xx*(asncs.x(n+5)+xx*(asncs.x(n+6)
+xx*(asncs.x(n+7)+xx*(asncs.x(n+8)+
xx*asncs.x(n+9))))))))+asncs.x(n+10);
t+=p;
res =asncs.x(n+11) +t;
cor = (asncs.x(n+11)-res)+t;
if (res == res+1.01*cor) return (m>0)?res:-res;
else {
r=asncs.x(n+11)+xx*asncs.x(n+12);
t=((asncs.x(n+11)-r)+xx*asncs.x(n+12))+(p+xx*asncs.x(n+13));
res = r+t;
cor = (r-res)+t;
if (res == res+1.0007*cor) return (m>0)?res:-res;
else {
res1=res+1.1*cor;
z=0.5*(res1-res);
y=(hp0.x()-res)-z;
z=y+hp1.x();
y=(y-z)+hp1.x();
__dubcos(z,y,w);
z=(w[0]-ABS(x))+w[1];
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
else {
y=ABS(x);
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
}
}
}
} /* else if (k < 0x3fee8000) */
/*--------------------0.953125 <= |x| < 0.96875 ------------------------*/
else
if (k < 0x3fef0000) {
n = 768+((k&0x000fe000)>>13)*15;
if (m>0) xx = x - asncs.x(n);
else xx = -x - asncs.x(n);
t = asncs.x(n+1)*xx;
p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+
xx*(asncs.x(n+5)+xx*(asncs.x(n+6)
+xx*(asncs.x(n+7)+xx*(asncs.x(n+8)+
xx*(asncs.x(n+9)+xx*asncs.x(n+10)))))))))+asncs.x(n+11);
t+=p;
res =asncs.x(n+12) +t;
cor = (asncs.x(n+12)-res)+t;
if (res == res+1.01*cor) return (m>0)?res:-res;
else {
r=asncs.x(n+12)+xx*asncs.x(n+13);
t=((asncs.x(n+12)-r)+xx*asncs.x(n+13))+(p+xx*asncs.x(n+14));
res = r+t;
cor = (r-res)+t;
if (res == res+1.0007*cor) return (m>0)?res:-res;
else {
res1=res+1.1*cor;
z=0.5*(res1-res);
y=(hp0.x()-res)-z;
z=y+hp1.x();
y=(y-z)+hp1.x();
__dubcos(z,y,w);
z=(w[0]-ABS(x))+w[1];
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
else {
y=ABS(x);
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
}
}
}
} /* else if (k < 0x3fef0000) */
/*--------------------0.96875 <= |x| < 1 --------------------------------*/
else
if (k<0x3ff00000) {
z = 0.5*((m>0)?(Double(1.0)-x):(Double(1.0)+x));
v.x()=z;
k=v.i[HIGH_HALF];
t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
r=1.0-t*t*z;
t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
c=t*z;
t=c*(1.5-0.5*t*c);
y=(c+t24)-t24;
cc = (z-y*y)/(t+y);
p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
cor = (hp1.x() - 2.0*cc)-2.0*(y+cc)*p;
res1 = hp0.x() - 2.0*y;
res =res1 + cor;
if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res;
else {
c=y+cc;
cc=(y-c)+cc;
__doasin(c,cc,w);
res1=hp0.x()-2.0*w[0];
cor=((hp0.x()-res1)-2.0*w[0])+(hp1.x()-2.0*w[1]);
res = res1+cor;
cor = (res1-res)+cor;
if (res==(res+1.0000001*cor)) return (m>0)?res:-res;
else {
y=ABS(x);
res1=res+1.1*cor;
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
}
}
} /* else if (k < 0x3ff00000) */
/*---------------------------- |x|>=1 -------------------------------*/
else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x():-hp0.x();
else
if (k>0x7ff00000 || (k == 0x7ff00000 && u.i[LOW_HALF] != 0)) return x;
else {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -