⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_asin.cpp

📁 这是整套横扫千军3D版游戏的源码
💻 CPP
📖 第 1 页 / 共 2 页
字号:
/* See the import.pl script for potential modifications */
/*
 * IBM Accurate Mathematical Library
 * written by International Business Machines Corp.
 * Copyright (C) 2001 Free Software Foundation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
/******************************************************************/
/*     MODULE_NAME:uasncs.c                                       */
/*                                                                */
/*     FUNCTIONS: uasin                                           */
/*                uacos                                           */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h  usncs.h           */
/*               doasin.c sincos32.c dosincos.c mpa.c             */
/*               sincos.tbl  asincos.tbl  powtwo.tbl root.tbl     */
/*                                                                */
/* Ultimate asin/acos routines. Given an IEEE Double machine      */
/* number x, compute the correctly rounded value of               */
/* arcsin(x)or arccos(x)  according to the function called.       */
/* Assumption: Machine arithmetic operations are performed in     */
/* round to nearest mode of IEEE 754 standard.                    */
/*                                                                */
/******************************************************************/
#include "endian.h"
#include "mydefs.h"
#include "asincos.tbl"
#include "root.tbl"
#include "powtwo.tbl"
#include "MathLib.h"
#include "uasncs.h"
#include "math_private.h"

void __doasin(Double x, Double dx, Double w[]);
void __dubsin(Double x, Double dx, Double v[]);
void __dubcos(Double x, Double dx, Double v[]);
void __docos(Double x, Double dx, Double v[]);
Double __sin32(Double x, Double res, Double res1);
Double __cos32(Double x, Double res, Double res1);

/***************************************************************************/
/* An ultimate asin routine. Given an IEEE Double machine number x         */
/* it computes the correctly rounded (to nearest) value of arcsin(x)       */
/***************************************************************************/
namespace streflop_libm {
Double __ieee754_asin(Double x){
  Double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2];
  mynumber u,v;
  int4 k,m,n;
#if 0
  int4 nn;
#endif

  u.x() = x;
  m = u.i[HIGH_HALF];
  k = 0x7fffffff&m;              /* no sign */

  if (k < 0x3e500000) return x;  /* for x->0 => sin(x)=x */
  /*----------------------2^-26 <= |x| < 2^ -3    -----------------*/
  else
  if (k < 0x3fc00000) {
    x2 = x*x;
    t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
    res = x+t;         /*  res=arcsin(x) according to Taylor series  */
    cor = (x-res)+t;
    if (res == res+1.025*cor) return res;
    else {
      x1 = x+big;
      xx = x*x;
      x1 -= big;
      x2 = x - x1;
      p = x1*x1*x1;
      s1 = a1.x()*p;
      s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
	     ((a1.x()+a2.x())*x2*x2+ 0.5*x1*x)*x2) + a2.x()*p;
      res1 = x+s1;
      s2 = ((x-res1)+s1)+s2;
      res = res1+s2;
      cor = (res1-res)+s2;
      if (res == res+1.00014*cor) return res;
      else {
	__doasin(x,0,w);
	if (w[0]==(w[0]+1.00000001*w[1])) return w[0];
	else {
	  y=ABS(x);
	  res=ABS(w[0]);
	  res1=ABS(w[0]+1.1*w[1]);
	  return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
	}
      }
    }
  }
  /*---------------------0.125 <= |x| < 0.5 -----------------------------*/
  else if (k < 0x3fe00000) {
    if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
    else n = 11*((k&0x000fffff)>>14)+352;
    if (m>0) xx = x - asncs.x(n);
    else xx = -x - asncs.x(n);
    t = asncs.x(n+1)*xx;
    p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+xx*(asncs.x(n+5)
     +xx*asncs.x(n+6)))))+asncs.x(n+7);
    t+=p;
    res =asncs.x(n+8) +t;
    cor = (asncs.x(n+8)-res)+t;
    if (res == res+1.05*cor) return (m>0)?res:-res;
    else {
      r=asncs.x(n+8)+xx*asncs.x(n+9);
      t=((asncs.x(n+8)-r)+xx*asncs.x(n+9))+(p+xx*asncs.x(n+10));
      res = r+t;
      cor = (r-res)+t;
      if (res == res+1.0005*cor) return (m>0)?res:-res;
      else {
	res1=res+1.1*cor;
	z=0.5*(res1-res);
	__dubsin(res,z,w);
	z=(w[0]-ABS(x))+w[1];
	if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
	else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
	else {
	  y=ABS(x);
	  return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
	}
      }
    }
  }    /*   else  if (k < 0x3fe00000)    */
  /*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/
  else
  if (k < 0x3fe80000) {
    n = 1056+((k&0x000fe000)>>11)*3;
    if (m>0) xx = x - asncs.x(n);
    else xx = -x - asncs.x(n);
    t = asncs.x(n+1)*xx;
    p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+xx*(asncs.x(n+5)
	   +xx*(asncs.x(n+6)+xx*asncs.x(n+7))))))+asncs.x(n+8);
    t+=p;
    res =asncs.x(n+9) +t;
    cor = (asncs.x(n+9)-res)+t;
    if (res == res+1.01*cor) return (m>0)?res:-res;
    else {
      r=asncs.x(n+9)+xx*asncs.x(n+10);
      t=((asncs.x(n+9)-r)+xx*asncs.x(n+10))+(p+xx*asncs.x(n+11));
      res = r+t;
      cor = (r-res)+t;
      if (res == res+1.0005*cor) return (m>0)?res:-res;
      else {
	res1=res+1.1*cor;
	z=0.5*(res1-res);
	__dubsin(res,z,w);
	z=(w[0]-ABS(x))+w[1];
	if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
	else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
	else {
	  y=ABS(x);
	  return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
	}
      }
    }
  }    /*   else  if (k < 0x3fe80000)    */
  /*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/
  else
  if (k < 0x3fed8000) {
    n = 992+((k&0x000fe000)>>13)*13;
    if (m>0) xx = x - asncs.x(n);
    else xx = -x - asncs.x(n);
    t = asncs.x(n+1)*xx;
    p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+xx*(asncs.x(n+5)
     +xx*(asncs.x(n+6)+xx*(asncs.x(n+7)+xx*asncs.x(n+8)))))))+asncs.x(n+9);
    t+=p;
    res =asncs.x(n+10) +t;
    cor = (asncs.x(n+10)-res)+t;
    if (res == res+1.01*cor) return (m>0)?res:-res;
    else {
      r=asncs.x(n+10)+xx*asncs.x(n+11);
      t=((asncs.x(n+10)-r)+xx*asncs.x(n+11))+(p+xx*asncs.x(n+12));
      res = r+t;
      cor = (r-res)+t;
      if (res == res+1.0008*cor) return (m>0)?res:-res;
      else {
	res1=res+1.1*cor;
	z=0.5*(res1-res);
	y=hp0.x()-res;
	z=((hp0.x()-y)-res)+(hp1.x()-z);
	__dubcos(y,z,w);
	z=(w[0]-ABS(x))+w[1];
	if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
	else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
	else {
	  y=ABS(x);
	  return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
	}
      }
    }
  }    /*   else  if (k < 0x3fed8000)    */
  /*-------------------0.921875 <= |x| < 0.953125 ------------------------*/
  else
  if (k < 0x3fee8000) {
    n = 884+((k&0x000fe000)>>13)*14;
    if (m>0) xx = x - asncs.x(n);
    else xx = -x - asncs.x(n);
    t = asncs.x(n+1)*xx;
    p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+
                      xx*(asncs.x(n+5)+xx*(asncs.x(n+6)
		      +xx*(asncs.x(n+7)+xx*(asncs.x(n+8)+
                      xx*asncs.x(n+9))))))))+asncs.x(n+10);
    t+=p;
    res =asncs.x(n+11) +t;
    cor = (asncs.x(n+11)-res)+t;
    if (res == res+1.01*cor) return (m>0)?res:-res;
    else {
      r=asncs.x(n+11)+xx*asncs.x(n+12);
      t=((asncs.x(n+11)-r)+xx*asncs.x(n+12))+(p+xx*asncs.x(n+13));
      res = r+t;
      cor = (r-res)+t;
      if (res == res+1.0007*cor) return (m>0)?res:-res;
      else {
	res1=res+1.1*cor;
	z=0.5*(res1-res);
	y=(hp0.x()-res)-z;
	z=y+hp1.x();
	y=(y-z)+hp1.x();
	__dubcos(z,y,w);
	z=(w[0]-ABS(x))+w[1];
	if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
	else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
	else {
	  y=ABS(x);
	  return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
	}
      }
    }
  }    /*   else  if (k < 0x3fee8000)    */

  /*--------------------0.953125 <= |x| < 0.96875 ------------------------*/
  else
  if (k < 0x3fef0000) {
    n = 768+((k&0x000fe000)>>13)*15;
    if (m>0) xx = x - asncs.x(n);
    else xx = -x - asncs.x(n);
    t = asncs.x(n+1)*xx;
    p=xx*xx*(asncs.x(n+2)+xx*(asncs.x(n+3)+xx*(asncs.x(n+4)+
                         xx*(asncs.x(n+5)+xx*(asncs.x(n+6)
			 +xx*(asncs.x(n+7)+xx*(asncs.x(n+8)+
                    xx*(asncs.x(n+9)+xx*asncs.x(n+10)))))))))+asncs.x(n+11);
    t+=p;
    res =asncs.x(n+12) +t;
    cor = (asncs.x(n+12)-res)+t;
    if (res == res+1.01*cor) return (m>0)?res:-res;
    else {
      r=asncs.x(n+12)+xx*asncs.x(n+13);
      t=((asncs.x(n+12)-r)+xx*asncs.x(n+13))+(p+xx*asncs.x(n+14));
      res = r+t;
      cor = (r-res)+t;
      if (res == res+1.0007*cor) return (m>0)?res:-res;
      else {
	res1=res+1.1*cor;
	z=0.5*(res1-res);
	y=(hp0.x()-res)-z;
	z=y+hp1.x();
	y=(y-z)+hp1.x();
	__dubcos(z,y,w);
	z=(w[0]-ABS(x))+w[1];
	if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
	else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
	else {
	  y=ABS(x);
	  return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
	}
      }
    }
  }    /*   else  if (k < 0x3fef0000)    */
  /*--------------------0.96875 <= |x| < 1 --------------------------------*/
  else
  if (k<0x3ff00000)  {
    z = 0.5*((m>0)?(Double(1.0)-x):(Double(1.0)+x));
    v.x()=z;
    k=v.i[HIGH_HALF];
    t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
    r=1.0-t*t*z;
    t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
    c=t*z;
    t=c*(1.5-0.5*t*c);
    y=(c+t24)-t24;
    cc = (z-y*y)/(t+y);
    p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
    cor = (hp1.x() - 2.0*cc)-2.0*(y+cc)*p;
    res1 = hp0.x() - 2.0*y;
    res =res1 + cor;
    if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res;
    else {
      c=y+cc;
      cc=(y-c)+cc;
      __doasin(c,cc,w);
      res1=hp0.x()-2.0*w[0];
      cor=((hp0.x()-res1)-2.0*w[0])+(hp1.x()-2.0*w[1]);
      res = res1+cor;
      cor = (res1-res)+cor;
      if (res==(res+1.0000001*cor)) return (m>0)?res:-res;
      else {
	y=ABS(x);
	res1=res+1.1*cor;
	return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
      }
    }
  }    /*   else  if (k < 0x3ff00000)    */
  /*---------------------------- |x|>=1 -------------------------------*/
  else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x():-hp0.x();
  else
  if (k>0x7ff00000 || (k == 0x7ff00000 && u.i[LOW_HALF] != 0)) return x;
  else {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -