📄 s_sin.cpp
字号:
if (a>0) {m=1;t=a;db=da;}
else {m=0;t=-a;db=-da;}
u.x()=big.x()+t;
y=t-(u.x()-big.x());
xx=y*y;
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k);
ssn=sincos.x(k+1);
cs=sincos.x(k+2);
ccs=sincos.x(k+3);
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
cor = (cor>0)? 1.035*cor+1.0e-31 : 1.035*cor-1.0e-31;
return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x);
}
} /* else if (k < 0x400368fd) */
else if (k < 0x419921FB ) {/* 2.426265<|x|< 105414350 */
t = (x*hpinv.x() + toint.x());
xn = t - toint.x();
v.x() = t;
y = (x - xn*mp1.x()) - xn*mp2.x();
n =v.i[LOW_HALF]&3;
da = xn*mp3.x();
a=y-da;
da = (y-a)-da;
eps = ABS(x)*1.2e-30;
switch (n) {
case 1:
case 3:
xx = a*a;
if (n == 1) {a=-a;da=-da;}
if (xx < 0.01588) {
t = (((((s5.x()*xx + s4.x())*xx + s3.x())*xx + s2.x())*xx + s1.x())*a - 0.5*da)*xx+da;
res = a+t;
cor = (a-res)+t;
cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;
return (res == res + cor)? res : csloww(a,da,x);
}
else {
if (a>0) {m=1;t=a;db=da;}
else {m=0;t=-a;db=-da;}
u.x()=big.x()+t;
y=t-(u.x()-big.x());
xx=y*y;
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k);
ssn=sincos.x(k+1);
cs=sincos.x(k+2);
ccs=sincos.x(k+3);
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;
return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x);
}
break;
case 0:
case 2:
if (a<0) {a=-a;da=-da;}
u.x()=big.x()+a;
y=a-(u.x()-big.x())+da;
xx=y*y;
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k);
ssn=sincos.x(k+1);
cs=sincos.x(k+2);
ccs=sincos.x(k+3);
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
cor=(ccs-s*ssn-cs*c)-sn*s;
res=cs+cor;
cor=(cs-res)+cor;
cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;
return (res==res+cor)? ((n)?-res:res) : csloww2(a,da,x,n);
break;
}
} /* else if (k < 0x419921FB ) */
else if (k < 0x42F00000 ) {
t = (x*hpinv.x() + toint.x());
xn = t - toint.x();
v.x() = t;
xn1 = (xn+8.0e22)-8.0e22;
xn2 = xn - xn1;
y = ((((x - xn1*mp1.x()) - xn1*mp2.x())-xn2*mp1.x())-xn2*mp2.x());
n =v.i[LOW_HALF]&3;
da = xn1*pp3.x();
t=y-da;
da = (y-t)-da;
da = (da - xn2*pp3.x()) -xn*pp4.x();
a = t+da;
da = (t-a)+da;
eps = 1.0e-24;
switch (n) {
case 1:
case 3:
xx = a*a;
if (n==1) {a=-a;da=-da;}
if (xx < 0.01588) {
t = (((((s5.x()*xx + s4.x())*xx + s3.x())*xx + s2.x())*xx + s1.x())*a - 0.5*da)*xx+da;
res = a+t;
cor = (a-res)+t;
cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;
return (res == res + cor)? res : bsloww(a,da,x,n);
}
else {
if (a>0) {m=1;t=a;db=da;}
else {m=0;t=-a;db=-da;}
u.x()=big.x()+t;
y=t-(u.x()-big.x());
xx=y*y;
s = y + (db+y*xx*(sn3 +xx*sn5));
c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k);
ssn=sincos.x(k+1);
cs=sincos.x(k+2);
ccs=sincos.x(k+3);
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;
return (res==res+cor)? ((m)?res:-res) : bsloww1(a,da,x,n);
}
break;
case 0:
case 2:
if (a<0) {a=-a;da=-da;}
u.x()=big.x()+a;
y=a-(u.x()-big.x())+da;
xx=y*y;
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k);
ssn=sincos.x(k+1);
cs=sincos.x(k+2);
ccs=sincos.x(k+3);
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
cor=(ccs-s*ssn-cs*c)-sn*s;
res=cs+cor;
cor=(cs-res)+cor;
cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;
return (res==res+cor)? ((n)?-res:res) : bsloww2(a,da,x,n);
break;
}
} /* else if (k < 0x42F00000 ) */
else if (k < 0x7ff00000) {/* 281474976710656 <|x| <2^1024 */
n = __branred(x,&a,&da);
switch (n) {
case 1:
if (a*a < 0.01588) return bsloww(-a,-da,x,n);
else return bsloww1(-a,-da,x,n);
break;
case 3:
if (a*a < 0.01588) return bsloww(a,da,x,n);
else return bsloww1(a,da,x,n);
break;
case 0:
case 2:
return bsloww2(a,da,x,n);
break;
}
} /* else if (k < 0x7ff00000 ) */
else return x / x; /* |x| > 2^1024 */
return 0;
}
/************************************************************************/
/* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */
/* precision and if still doesn't accurate enough by mpsin or dubsin */
/************************************************************************/
static Double slow(Double x) {
static const Double th2_36 = 206158430208.0; /* 1.5*2**37 */
Double y,x1,x2,xx,r,t,res,cor,w[2];
x1=(x+th2_36)-th2_36;
y = aa.x()*x1*x1*x1;
r=x+y;
x2=x-x1;
xx=x*x;
t = (((((s5.x()*xx + s4.x())*xx + s3.x())*xx + s2.x())*xx + bb.x())*xx + 3.0*aa.x()*x1*x2)*x +aa.x()*x2*x2*x2;
t=((x-r)+y)+t;
res=r+t;
cor = (r-res)+t;
if (res == res + 1.0007*cor) return res;
else {
__dubsin(ABS(x),0,w);
if (w[0] == w[0]+1.000000001*w[1]) return (x>0)?w[0]:-w[0];
else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);
}
}
/*******************************************************************************/
/* Routine compute sin(x) for 0.25<|x|< 0.855469 by sincos.tbl and Taylor */
/* and if result still doesn't accurate enough by mpsin or dubsin */
/*******************************************************************************/
static Double slow1(Double x) {
mynumber u;
Double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;
static const Double t22 = 6291456.0;
int4 k;
y=ABS(x);
u.x()=big.x()+y;
y=y-(u.x()-big.x());
xx=y*y;
s = y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k); /* Data */
ssn=sincos.x(k+1); /* from */
cs=sincos.x(k+2); /* tables */
ccs=sincos.x(k+3); /* sincos.tbl */
y1 = (y+t22)-t22;
y2 = y - y1;
c1 = (cs+t22)-t22;
c2=(cs-c1)+ccs;
cor=(ssn+s*ccs+cs*s+c2*y+c1*y2)-sn*c;
y=sn+c1*y1;
cor = cor+((sn-y)+c1*y1);
res=y+cor;
cor=(y-res)+cor;
if (res == res+1.0005*cor) return (x>0)?res:-res;
else {
__dubsin(ABS(x),0,w);
if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0];
else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);
}
}
/**************************************************************************/
/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by sincos.tbl */
/* and if result still doesn't accurate enough by mpsin or dubsin */
/**************************************************************************/
static Double slow2(Double x) {
mynumber u;
Double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res,del;
static const Double t22 = 6291456.0;
int4 k;
y=ABS(x);
y = hp0.x()-y;
if (y>=0) {
u.x() = big.x()+y;
y = y-(u.x()-big.x());
del = hp1.x();
}
else {
u.x() = big.x()-y;
y = -(y+(u.x()-big.x()));
del = -hp1.x();
}
xx=y*y;
s = y*xx*(sn3 +xx*sn5);
c = y*del+xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k);
ssn=sincos.x(k+1);
cs=sincos.x(k+2);
ccs=sincos.x(k+3);
y1 = (y+t22)-t22;
y2 = (y - y1)+del;
e1 = (sn+t22)-t22;
e2=(sn-e1)+ssn;
cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;
y=cs-e1*y1;
cor = cor+((cs-y)-e1*y1);
res=y+cor;
cor=(y-res)+cor;
if (res == res+1.0005*cor) return (x>0)?res:-res;
else {
y=ABS(x)-hp0.x();
y1=y-hp1.x();
y2=(y-y1)-hp1.x();
__docos(y1,y2,w);
if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0];
else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);
}
}
/***************************************************************************/
/* Routine compute sin(x+dx) (Double-Length number) where x is small enough*/
/* to use Taylor series around zero and (x+dx) */
/* in first or third quarter of unit circle.Routine receive also */
/* (right argument) the original value of x for computing error of */
/* result.And if result not accurate enough routine calls mpsin1 or dubsin */
/***************************************************************************/
static Double sloww(Double x,Double dx, Double orig) {
static const Double th2_36 = 206158430208.0; /* 1.5*2**37 */
Double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn;
struct {
inline Double& d() {return DOUBLE_FROM_INT_PTR(&i[0]);}
inline Double& x() {return DOUBLE_FROM_INT_PTR(&i[0]);}
inline Double& d(int idx) {return DOUBLE_FROM_INT_PTR(&i[idx*(sizeof(double)/sizeof(i))]);}
inline Double& x(int idx) {return DOUBLE_FROM_INT_PTR(&i[idx*(sizeof(double)/sizeof(i))]);}
inline const Double& d() const {return CONST_DOUBLE_FROM_INT_PTR(&i[0]);}
inline const Double& x() const {return CONST_DOUBLE_FROM_INT_PTR(&i[0]);}
inline const Double& d(int idx) const {return CONST_DOUBLE_FROM_INT_PTR(&i[idx*(sizeof(double)/sizeof(i))]);}
inline const Double& x(int idx) const {return CONST_DOUBLE_FROM_INT_PTR(&i[idx*(sizeof(double)/sizeof(i))]);}
int4 i[2];} v;
int4 n;
x1=(x+th2_36)-th2_36;
y = aa.x()*x1*x1*x1;
r=x+y;
x2=(x-x1)+dx;
xx=x*x;
t = (((((s5.x()*xx + s4.x())*xx + s3.x())*xx + s2.x())*xx + bb.x())*xx + 3.0*aa.x()*x1*x2)*x +aa.x()*x2*x2*x2+dx;
t=((x-r)+y)+t;
res=r+t;
cor = (r-res)+t;
cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30;
if (res == res + cor) return res;
else {
(x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w);
cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30;
if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];
else {
t = (orig*hpinv.x() + toint.x());
xn = t - toint.x();
v.x() = t;
y = (orig - xn*mp1.x()) - xn*mp2.x();
n =v.i[LOW_HALF]&3;
da = xn*pp3.x();
t=y-da;
da = (y-t)-da;
y = xn*pp4.x();
a = t - y;
da = ((t-a)-y)+da;
if (n&2) {a=-a; da=-da;}
(a>0)? __dubsin(a,da,w) : __dubsin(-a,-da,w);
cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40;
if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0];
else return __mpsin1(orig);
}
}
}
/***************************************************************************/
/* Routine compute sin(x+dx) (Double-Length number) where x in first or */
/* third quarter of unit circle.Routine receive also (right argument) the */
/* original value of x for computing error of result.And if result not */
/* accurate enough routine calls mpsin1 or dubsin */
/***************************************************************************/
static Double sloww1(Double x, Double dx, Double orig) {
mynumber u;
Double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;
static const Double t22 = 6291456.0;
int4 k;
y=ABS(x);
u.x()=big.x()+y;
y=y-(u.x()-big.x());
dx=(x>0)?dx:-dx;
xx=y*y;
s = y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
sn=sincos.x(k);
ssn=sincos.x(k+1);
cs=sincos.x(k+2);
ccs=sincos.x(k+3);
y1 = (y+t22)-t22;
y2 = (y - y1)+dx;
c1 = (cs+t22)-t22;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -