⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mac.c

📁 嵌入式开发的实例
💻 C
📖 第 1 页 / 共 3 页
字号:
/**************************************************************************************************
 *                                                                          
 * Copyright (c) 2001 - 2003 Winbond Electronics Corp. All rights reserved.      
 *                                                                         
 * FILENAME
 *     mac.c
 *
 * VERSION
 *     1.0
 *
 * DESCRIPTION
 *     Main functions of W90N740 MAC Diagnostic Program. This program will receive any packets 
 *     from one Ethernet port, then send the packets through another port. The symbol 
 *     EXTERNAL_LOOPBACK_PORT define the port for sending packets. When running this program,
 *     please plug a loop-back connector at the Ethernet port (EXTERNAL_LOOPBACK_PORT) and connect
 *     the other port to a LAN or a test machine for receiving packets.
 *
 * DATA STRUCTURES
 *     None
 *
 * FUNCTIONS
 *     1. TimerX_ISR()
 *     2. TimerInitialize()
 *     3. ShowCurTime()
 *
 * HISTORY
 *     04/14/2003		 Ver 1.0 Created by PC30 Jen-Hao Tsai
 *    
 *     04/18/2003        Modified by PC30 Min-Nan Cheng
 *
 * REMARK
 *     None
 *     
 *************************************************************************************************/
#include <stdarg.h>
#include <string.h>
#include "740defs.h"
#include "mac.h"

// fixed buffers, just for testing !
#define RxFDBaseAddr0   0x80400000     //descriptor buffer
#define TxFDBaseAddr0   0x80400200
#define RxFBABaseAddr0  0x80400300     //data buffer
#define TxFBABaseAddr0  0x8040c100
#define RxFBALimitAddr0 0x8047fd80

#define RxFDBaseAddr1   0x80480000     //descriptor buffer 
#define TxFDBaseAddr1   0x80480200
#define RxFBABaseAddr1  0x80480300     //data buffer
#define TxFBABaseAddr1  0x8048c100
#define RxFBALimitAddr1 0x804ffd80

#define EXTERNAL_LOOPBACK_PORT      1  //can be 0 or 1
#define PHY_Auto_Negotiation           //define this symbol for doing PHY auto-negotiation


U32 RxFrameBuffer0 = (U32)TxFBABaseAddr0 ;
U32 RxFrameBuffer1 = (U32)TxFBABaseAddr1 ;

// Global variables  used for MAC driver
volatile U32 gMCMDR = MCMDR_RXON | MCMDR_SPCRC | MCMDR_EnMDC | MCMDR_FDUP; // | MCMDR_AEP;
                                
volatile U32 gMIEN = EnTXINTR | EnRXINTR | EnRXGD | EnTXCP |
                     EnTxBErr | EnRxBErr; // | EnRDU | EnTDU; //| EnALIE; //|EnCRCE ;  
                 
//volatile U32 gCAMCMR = CAM_ECMP; //|CAM_AUP;
//Accept ANY kind of packet (Unicast, Broadcasr and Multicase) !!!
volatile U32 gCAMCMR = CAM_ECMP | CAM_AUP | CAM_AMP | CAM_ABP;


volatile U32 gCTxFDPtr[2], gWTxFDPtr[2], gCRxFDPtr[2];
volatile U32 gCam0M_0 = 0 , gCam0L_0 = 0;
volatile U32 gCam0M_1 = 0 , gCam0L_1 = 0;
volatile U8  MyMacSrcAddr[2][6] ;
volatile int gErrorPacketCnt[2] ;
volatile U32 gTxErrPacketCnt[2]; //CMN
volatile U32 gRxErrPacketCnt[2]; //CMN
volatile int MacRxDoneFlagForLoopBackCheck[2] ;
volatile int MacTxDoneFlagForLoopBackCheck[2] ;

// Global variable structure for store status
volatile pMACTxStatus gsMacTxStatus[2];
volatile pMACRxStatus gsMacRxStatus[2];

// for DIAG message
#define  TIMER_CHANNEL   1  //Timer channel 1 
volatile U32 PreTicks[2];
volatile U32 PreTxBytes[2], PreRxBytes[2];
 
volatile U32 PktSeq = 0;
volatile U32 TxPktSeq = 0;
volatile U32 RxPktSeq = 0;
volatile U32 TxPktSeqWanted = 0;
volatile U32 RxPktSeqWanted = 0;
volatile U32 TxPktSeqErr = 0;
volatile U32 RxPktSeqErr = 0;
volatile U32 DoChk = 0;


void ShowTxRxStatusWithTime()
{
  volatile U32 t_hr, t_min, t_sec;
  volatile U32 TxRate[2], RxRate[2];
  U32 ticks;
  int num;
  
  ticks = cur_ticks; //get current tick count !  
  for (num=0; num<2; num++)
  {
       RxRate[num] = ((gsMacRxStatus[num].RxBytes - PreRxBytes[num]) * 100 * 8) / ((ticks - PreTicks[num]) * 1024);
       TxRate[num] = ((gsMacTxStatus[num].TxBytes - PreTxBytes[num]) * 100 * 8) / ((ticks - PreTicks[num]) * 1024);
       PreTxBytes[num] = gsMacTxStatus[num].TxBytes;
       PreRxBytes[num] = gsMacRxStatus[num].RxBytes;
       PreTicks[num]   = ticks;
  }
  
  t_sec = ticks / 100;
  t_min = t_sec / 60;
  t_sec %= 60;
  
  t_hr = t_min / 60;
  t_min %= 60;

//  UART_printf("\n\n");
  UART_printf("                 RUNNING TIME - %2d : %2d : %2d\n", t_hr, t_min, t_sec);
  
  for (num = 0; num<2; num++)
  {
    UART_printf("MAC %d ------------------------------------------------------------------------\n", num);
    UART_printf("[1] Throughput| Tx:%6d Kbps    Rx:%6d Kbps\n", TxRate[num], RxRate[num]);
    UART_printf("[2] PKT Count | Tx:%d         Rx:%d\n", gsMacTxStatus[num].TXCP, gsMacRxStatus[num].RXGD);
    UART_printf("[3] ERR Pkts  | Tx:%d         Rx:%d\n", gTxErrPacketCnt[num], gRxErrPacketCnt[num]);
    UART_printf("[4] TX Status | DEF:%d, EDEF:%d, NCS:%d, ABT:%d, LC:%d\n", gsMacTxStatus[num].DEF, gsMacTxStatus[num].EXDEF, gsMacTxStatus[num].NCS, gsMacTxStatus[num].TXABT, gsMacTxStatus[num].LC);
    UART_printf("              | HA:%d, PAU:%d, SQE:%d, BErr:%d, TDU:%d, EMP:%d\n", gsMacTxStatus[num].TXHA, gsMacTxStatus[num].PAU, gsMacTxStatus[num].SQE, gsMacTxStatus[num].TxBErr, gsMacTxStatus[num].TDU, gsMacTxStatus[num].EMP);
    UART_printf("[5] RX Status | RP:%d, ALI:%d, PTL:%d, CRCE:%d, CFR:%d, BErr:%d, RXOV:%d\n", gsMacRxStatus[num].RP, gsMacRxStatus[num].ALIE, gsMacRxStatus[num].PTLE,
                                                                                        gsMacRxStatus[num].CRCE, gsMacRxStatus[num].CFR, gsMacRxStatus[num].RxBErr, gsMacRxStatus[num].RXOV);

    if (num != EXTERNAL_LOOPBACK_PORT)
        UART_printf("\n\n");
    else
    {
         UART_printf("[6] Tx SEQ    | Cur=%d, Want=%d, SeqErr=%d, DoChk=%d\n", TxPktSeq, TxPktSeqWanted, TxPktSeqErr, DoChk);
         UART_printf("[7] Rx SEQ    | Cur=%d, Want=%d, SeqErr=%d\n", RxPktSeq, RxPktSeqWanted, RxPktSeqErr);         
    }

    UART_printf("\n");
  }

  UART_printf("%c[21A", 0x1B);
}
 

// Read Error Status and Time
void ReadErrReport(int num)
{
 UART_printf("< Error Report >\n") ;
 UART_printf("MAC Tx Err Count (Good:%d)\n",(int)gsMacTxStatus[num].TXCP) ;
 UART_printf("TXABT: %d, DEF: %d, PAU: %d,\n", (int)gsMacTxStatus[num].TXABT,
             (int)gsMacTxStatus[num].DEF, (int)gsMacTxStatus[num].PAU);
 UART_printf("EXDEF: %d, NCS: %d, SQE: %d,\n", (int)gsMacTxStatus[num].EXDEF,
             (int)gsMacTxStatus[num].NCS, (int)gsMacTxStatus[num].SQE);
 UART_printf("LC: %d, TXHA: %d\n",
               (int)gsMacTxStatus[num].LC,(int)gsMacTxStatus[num].TXHA);

 UART_printf("MAC Rx Err Count (Good:%d)\n",(int)gsMacRxStatus[num].RXGD) ;
 UART_printf("ALIE: %d, CRCE: %d,\n",
            (int)gsMacRxStatus[num].ALIE, (int)gsMacRxStatus[num].CRCE);
 UART_printf("PTLE: %d, RP: %d\n",
            (int)gsMacRxStatus[num].PTLE, (int)gsMacRxStatus[num].RP);

 if (num==0)
   UART_printf("Missed Error Count : %d\n",MPCNT_0) ;
 else if (num==1)
   UART_printf("Missed Error Count : %d\n",MPCNT_1) ;
}


// Clear Error Report Area
void ClearErrReport(int num)
{
 gsMacTxStatus[num].DEF=gsMacTxStatus[num].TXCP=gsMacTxStatus[num].EXDEF=0;
 gsMacTxStatus[num].NCS=gsMacTxStatus[num].TXABT=gsMacTxStatus[num].LC=0;
 gsMacTxStatus[num].TXHA=gsMacTxStatus[num].PAU=gsMacTxStatus[num].SQE=0;
 gsMacTxStatus[num].TxBErr = 0; //CMN [2002/11/01]
 gsMacTxStatus[num].TxBytes = 0;
 gsMacTxStatus[num].TDU = 0;
 gsMacTxStatus[num].EMP = 0;

 gsMacRxStatus[num].RP=gsMacRxStatus[num].ALIE=gsMacRxStatus[num].RXGD=0;
 gsMacRxStatus[num].PTLE=gsMacRxStatus[num].CRCE=gsMacRxStatus[num].CFR=0; 
 gsMacRxStatus[num].RxBErr = 0; //CMN [2002/11/01]
 gsMacRxStatus[num].RxBytes = 0;
 gsMacRxStatus[num].RXOV = 0;
 
#ifdef USE_TIME
 PreTicks[num] = 0;
 PreTxBytes[num] = PreRxBytes[num] = 0;
#endif  
}


// LAN Initialize Setting
void LanInitialize(int num)
{
 ClearErrReport(num);

 gErrorPacketCnt[num] = 0;
 gTxErrPacketCnt[num] = gRxErrPacketCnt[num] = 0; //CMN
 MacRxDoneFlagForLoopBackCheck[num] = 0;
 MacTxDoneFlagForLoopBackCheck[num] = 0;

 MyMacSrcAddr[0][0] = 0x00 ;
 MyMacSrcAddr[0][1] = 0x50 ;
 MyMacSrcAddr[0][2] = 0xba ;
 MyMacSrcAddr[0][3] = 0x33 ;
 MyMacSrcAddr[0][4] = 0xbe ;
 MyMacSrcAddr[0][5] = 0x44 ;

 MyMacSrcAddr[1][0] = 0x00 ;
 MyMacSrcAddr[1][1] = 0x50 ;
 MyMacSrcAddr[1][2] = 0xba ;
 MyMacSrcAddr[1][3] = 0x33 ;
 MyMacSrcAddr[1][4] = 0xbe ;
 MyMacSrcAddr[1][5] = 0x55 ;

 // Initialize MAC controller
 MacInitialize(num) ;
 
 ResetPhyChip(num) ;

 // Set MAC address to CAM
 SetMacAddr(num) ;
}


// Reset PHY, Auto-Negotiation Enable
void ResetPhyChip(int num)
{
 U32 RdValue;
 int mode;
 
 if (num == EXTERNAL_LOOPBACK_PORT)
 {
     MiiStationWrite(num, PHY_CNTL_REG, PHYAD, PHY_FULLDUPLEX | DR_100MB);
 }
 else
 { 
#ifdef PHY_Auto_Negotiation
     /* 
     switch(mode)
     {
 	   case MODE_DR100_FULL: 
 	      MiiStationWrite(num,PHY_ANA_REG,PHYAD,DR100_TX_FULL|IEEE_802_3_CSMA_CD);
 	      break;
 	   case MODE_DR100_HALF: 
 	      MiiStationWrite(num,PHY_ANA_REG,PHYAD,DR100_TX_HALF|IEEE_802_3_CSMA_CD);
 	      break;
 	   case MODE_DR10_FULL: 
 	      MiiStationWrite(num,PHY_ANA_REG,PHYAD,DR10_TX_FULL|IEEE_802_3_CSMA_CD);
 	      break;
 	   case MODE_DR10_HALF: 
 	      MiiStationWrite(num,PHY_ANA_REG,PHYAD,DR10_TX_HALF|IEEE_802_3_CSMA_CD);
 	      break;
 	   default: 
 	      break;
     }	   
     */
     MiiStationWrite(num, PHY_ANA_REG,  PHYAD, DR10_TX_HALF|DR10_TX_FULL|DR100_TX_HALF|
                                               DR100_TX_FULL|IEEE_802_3_CSMA_CD);                     
     MiiStationWrite(num, PHY_CNTL_REG, PHYAD, ENABLE_AN | RESTART_AN);

     while (1) // wait for auto-negotiation complete
     {
        RdValue = MiiStationRead(num, PHY_STATUS_REG, PHYAD) ;
        if ((RdValue&AN_COMPLETE)!=0)
             break;
     }
#else 
     mode=MODE_DR10_FULL;

     switch(mode)
     {
 	   case MODE_DR100_FULL: 
            MiiStationWrite(num, PHY_CNTL_REG, PHYAD, PHY_FULLDUPLEX | DR_100MB);
 	        break;
 	   case MODE_DR100_HALF: 
            MiiStationWrite(num, PHY_CNTL_REG, PHYAD, DR_100MB);
 	        break;
 	   case MODE_DR10_FULL: 
            MiiStationWrite(num, PHY_CNTL_REG, PHYAD, PHY_FULLDUPLEX);
 	        break;
 	   case MODE_DR10_HALF: 
            MiiStationWrite(num, PHY_CNTL_REG, PHYAD, 0);
 	        break;
 	   default: 
            MiiStationWrite(num, PHY_CNTL_REG, PHYAD, 0);
     }	   
#endif
 }
 
 UART_printf("W90N740 MAC%d: ",num);
 RdValue = MiiStationRead(num, PHY_CNTL_REG, PHYAD) ;
 if ((RdValue&DR_100MB)!=0) // 100MB
   {
    UART_printf("100MB - ");
    if (num==1)
      MCMDR_1 |= MCMDR_OPMOD;
    else
      MCMDR_0 |= MCMDR_OPMOD;
   }
  else 
   {
    UART_printf("10MB - ");
    if (num==1)
      MCMDR_1 &= ~MCMDR_OPMOD;
    else
      MCMDR_0 &= ~MCMDR_OPMOD;
   }
 if ((RdValue&PHY_FULLDUPLEX)!=0) // Full Duplex
   {
    UART_printf("Full Duplex\n");
    if (num==1)
      MCMDR_1 |= MCMDR_FDUP;
    else
      MCMDR_0 |= MCMDR_FDUP;
   }
  else 
   { 
    UART_printf("Half Duplex\n");
    if (num==1)
      MCMDR_1 &= ~MCMDR_FDUP;
    else
      MCMDR_0 &= ~MCMDR_FDUP;
   } 
}


// MII Interface Station Management Register Write
void MiiStationWrite(int num, U32 PhyInAddr, U32 PhyAddr, U32 PhyWrData)
{
 int i=1000;

 if (num==0)
   {
    MIID_0 = PhyWrData ;
    MIIDA_0 = PhyInAddr | PhyAddr | PHYBUSY | PHYWR | MDCCR;
    while(i--) ;
    while( (MIIDA_0 & PHYBUSY) )  ;
   }
 else if (num==1)
   {
    MIID_1 = PhyWrData ;
    MIIDA_1 = PhyInAddr | PhyAddr | PHYBUSY | PHYWR | MDCCR;
    while(i--) ;
    while( (MIIDA_1 & PHYBUSY) )  ;
   }
}


// MII Interface Station Management Register Read
U32 MiiStationRead(int num, U32 PhyInAddr, U32 PhyAddr)
{
 U32 PhyRdData ;
 if (num==0)
   {
    MIIDA_0 = PhyInAddr | PhyAddr | PHYBUSY | MDCCR;
    while( (MIIDA_0 & PHYBUSY) )  ;
    PhyRdData = MIID_0 ;  
   }
 else if (num==1)
   {
    MIIDA_1 = PhyInAddr | PhyAddr | PHYBUSY | MDCCR;
    while( (MIIDA_1 & PHYBUSY) )  ;
    PhyRdData = MIID_1 ;
   }
 return PhyRdData ;
}


// Set MAC Address to CAM
void SetMacAddr(int num)
{
 int i;

 //UART_printf("SetMacAddr()\n");

 if (num==0)
   {
    /* Copy MAC Address to global variable */
    for (i=0;i<(int)MAC_ADDR_SIZE-2;i++)
       gCam0M_0 = (gCam0M_0 << 8) | MyMacSrcAddr[0][i] ;

    for (i=(int)(MAC_ADDR_SIZE-2);i<(int)MAC_ADDR_SIZE;i++)
       gCam0L_0 = (gCam0L_0 << 8) | MyMacSrcAddr[0][i] ;
    gCam0L_0 = (gCam0L_0 << 16) ;

    FillCamEntry(0, 0, gCam0M_0, gCam0L_0);
   }
 else if (num==1)
   {
    /* Copy MAC Address to global variable */
    for (i=0;i<(int)MAC_ADDR_SIZE-2;i++)
       gCam0M_1 = (gCam0M_1 << 8) | MyMacSrcAddr[1][i] ;

    for (i=(int)(MAC_ADDR_SIZE-2);i<(int)MAC_ADDR_SIZE;i++)
       gCam0L_1 = (gCam0L_1 << 8) | MyMacSrcAddr[1][i] ;
    gCam0L_1 = (gCam0L_1 << 16) ;

    FillCamEntry(1, 0, gCam0M_1, gCam0L_1);
   }
}


void EnableCamEntry(int num, int entry)
{
 if (num==0)
   CAMEN_0 |= 0x00000001<<entry ;
 else if (num==1)
   CAMEN_1 |= 0x00000001<<entry ;
}


void DisableCamEntry(int num, int entry)
{
 if (num==0)
   CAMEN_0 &= ~(0x00000001<<entry) ;
 else if (num==1)
   CAMEN_1 &= ~(0x00000001<<entry) ;
}


void FillCamEntry(int num, int entry, U32 msw, U32 lsw)
{
 if (num==0)
   {
    CAMxM_Reg_0(entry) = msw;
    CAMxL_Reg_0(entry) = lsw;
   }
 else if (num==1)
   {
    CAMxM_Reg_1(entry) = msw;
    CAMxL_Reg_1(entry) = lsw;
   }
 EnableCamEntry(num,entry);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -